Exercise 7. Differentiating common functions

In Problems 1 to 6 find the differential coefficients of the given functions with respect to the variable.

1. (a)
$$5x^5$$
 (b) $2.4x^{3.5}$ (c) $\frac{1}{x}$

2. (a)
$$\frac{-4}{x^2}$$
 (b) 6 (c) $2x$

3. (a)
$$2\sqrt{x}$$
 (b) $3\sqrt[3]{x^5}$ (c) $\frac{4}{\sqrt{x}}$

4. (a)
$$\frac{-3}{\sqrt[3]{x}}$$
 (b) $(x-1)^2$ (c) $2\sin 3x$

5. (a)
$$-4\cos 2x$$
 (b) $2e^{6x}$ (c) $\frac{3}{e^{5x}}$

6. (a)
$$4 \ln 9x$$
 (b) $\frac{e^x - e^{-x}}{2}$ (c) $\frac{1 - \sqrt{x}}{x}$

7. Find the gradient of the curve
$$y = 2t^4 + 3t^3 - t + 4$$
 at the points $(0, 4)$ and $(1, 8)$.

8. Find the co-ordinates of the point on graph $y = 5x^2 - 3x + 1$ where the gradiet is 2.

9. (a) Differentiate
$$y = \frac{2}{\theta^2} + 2\ln 2\theta - 2(\cos 5\theta + 3\sin 2\theta) - \frac{2}{e^{3\theta}}$$

(b) Evaluate
$$\frac{dy}{d\theta}$$
 when $\theta = \frac{\pi}{2}$, correct to 4 significant figures.

10. Evaluate
$$\frac{ds}{dt}$$
, correct to 3 significant figures, when $t = \frac{\pi}{6}$ given $s = 3 \sin t - 3 + \sqrt{t}$

Exercise 8. Differentiating products

In Problems 1 to 8 differentiate the given products with respect to the variable.

- 1. $x \sin x$
- 2. x^2e^{2x}
- 3. $x^2 \ln x$
- 4. $2x^3 \cos 3x$
- 5. $\sqrt{x^3} \ln 3x$
- 6. $e^{3t} \sin 4t$
- 7. $e^{4\theta} \ln 3\theta$
- 8. $e^t \ln t \cos t$
- 9. Evaluate $\frac{di}{dt}$, correct to 4 significant figure, when t = 0.1, and $i = 15t \sin 3t$
- 10. Evaluate $\frac{dz}{dt}$, correct to 4 significant figures, when t = 0.5, given that $z = 2e^{3t} \sin 2t$

Exercise 9. Differentiating quotients

In Problems 1 to 7, differentiate the quotients with respect to the variable.

1.
$$\frac{\sin x}{x}$$

$$2. \quad \frac{2\cos 3x}{x^3}$$

$$3. \quad \frac{2x}{x^2 + 1}$$

$$4. \quad \frac{\sqrt{x}}{\cos x}$$

$$5. \quad \frac{3\sqrt{\theta^3}}{2\sin 2\theta}$$

6.
$$\frac{\ln 2t}{\sqrt{t}}$$

$$7. \quad \frac{2xe^{4x}}{\sin x}$$

8. Find the gradient of the curve
$$y = \frac{2x}{x^2 - 5}$$
 at the point $(2, -4)$

Exercise 10. Function of a function

In Problems 1 to 9, find the differential coefficients with respect to the variable.

- 1. $(2x-1)^6$
- 2. $(2x^3 5x)^5$
- 3. $2\sin(3\theta 2)$
- 4. $2\cos^5\alpha$
- $5. \quad \frac{1}{(x^3 2x + 1)^5}$
- 6. $5e^{2t+1}$
- 7. $2 \cot(5t^2 + 3)$
- 8. $6 \tan(3y+1)$
- 9. $2e^{\tan\theta}$

Exercise 11. Successive differentiation

1. If
$$y = 3x^4 + 2x^3 - 3x + 2$$
 find
(a) $\frac{d^2y}{dx^2}$ (b) $\frac{d^3y}{dx^3}$

- 2. (a) Given $f(t) = \frac{2}{5}t^2 \frac{1}{t^3} + \frac{3}{t} \sqrt{t} + 1$ determine f''(t)
 - (b) Evaluate f''(t) when t = 1

In Problems 3 and 4, find the second differential coefficient with respect to the variable.

3. (a) $3 \sin 2t + \cos t$ (b) $2 \ln 4\theta$

4. (a) $2\cos^2 x$ (b) $(2x-3)^4$