## Exercise 25. Total differential

In Problems 1 to 5, find the total differential dz.

1. $z=x^{3}+y^{2}$
2. $z=2 x y-\cos x$
3. $z=\frac{x-y}{x+y}$
4. $z=x \ln y$
5. $z=x y+\frac{\sqrt{x}}{y}-4$
6. If $z=f(a, b, c)$ and $z=2 a b-3 b^{2} c+a b c$, find the total differential, $\mathrm{d} z$.

## Exercise 26. Rates of change

1. The radius of a right cylinder is increas-ing at a rate of $8 \mathrm{~mm} / \mathrm{s}$ and the height is decreasing at a rate of $15 \mathrm{~mm} / \mathrm{s}$. Find the rate at which the volume is changing in $\mathrm{cm}^{3} / \mathrm{s}$ when the radius is 40 mm and the height is 150 mm .
2. If $z=f(x, y)$ and $z=3 x^{2} y^{5}$, find the rate of change of $z$ when $x$ is 3 units and $y$ is 2 units when $x$ is decreasing at 5 units/s and $y$ is increasing at 2.5 units/s.
3. Find the rate of change of $k$, correct to 4 significant figures, given the following data: $k=f(a, b$, $c) ; k=2 b \ln a+c^{2} e^{a} ; a$ is increasing at $2 \mathrm{~cm} / \mathrm{s} ; b$ is decreasing at $3 \mathrm{~cm} / \mathrm{s} ; c$ is decreasing at $1 \mathrm{~cm} / \mathrm{s} ; a=1.5 \mathrm{~cm}, b=6 \mathrm{~cm}$ and $c=8 \mathrm{~cm}$.
4. A rectangular box has sides of length $x \mathrm{~cm}, y \mathrm{~cm}$ and $z \mathrm{~cm}$. Sides $x$ and $z$ are expanding at rates of $3 \mathrm{~mm} / \mathrm{s}$ and $5 \mathrm{~mm} / \mathrm{s}$ respectively and side $y$ is contracting at a rate of $2 \mathrm{~mm} / \mathrm{s}$. Determine the rate of change of volume when $x$ is $3 \mathrm{~cm}, y$ is 1.5 cm and $z$ is 6 cm .
5. Find the rate of change of the total surface area of a right circular cone at the instant when the base radius is 5 cm and the height is 12 cm if the radius is increasing at $5 \mathrm{~mm} / \mathrm{s}$ and the height is decreasing at $15 \mathrm{~mm} / \mathrm{s}$.

## Exercise 27. Small changes

1. The power $P$ consumed in a resistor is given by $P=V^{2} / R$ watts. Determine the approxi-mate change in power when $V$ increases by $5 \%$ and $R$ decreases by $0.5 \%$ if the original values of $V$ and $R$ are 50 volts and 12.5 ohms respectively.
2. An equation for heat generated $H$ is $H=i^{2} R t$. Determine the error in the calculated value of $H$ if the error in measuring current $i$ is $+2 \%$, the error in measuring resistance $R$ is $-3 \%$ and the error in measuring time $t$ is $+1 \%$.
3. $f_{r}=\frac{1}{2 \pi \sqrt{\overline{L C}}}$ represents the resonant
frequency of a series connected circuit containing inductance $L$ and capacitance $C$. Determine the approximate percentage change in $f_{r}$ when $L$ is decreased by $3 \%$ and $C$ is increased by $5 \%$.
4. The second moment of area of a rectangle about its centroid parallel to side $b$ is given by $I=$ $b d^{3} / 12$. If $b$ and $d$ are measured as 15 cm and 6 cm respectively and the measurement errors are +12 mm in $b$ and -1.5 mm in $d$, find the error in the calculated value of $I$.
5. The side $b$ of a triangle is calculated using $b^{2}=a^{2}+c^{2}-2 a c \cos B$. I f $a, c$ and $B$ are measured as $3 \mathrm{~cm}, 4 \mathrm{~cm}$ and $\pi / 4$ radians respectively and the measurement errors which occur are +0.8 cm , -0.5 cm and $+\pi / 90$ radians respectively, determine the error in the calculated value of $b$.
