Exercise 17. Volumes of solids of revolution

(Answers are in cubic units and in terms of π.)
In Problems 1 to 5, determine the volume of the solid of revolution formed by revolving the areas enclosed by the given curve, the x-axis and the given ordinates through one revolution about the x-axis.

1. $y=5 x ; x=1, x=4$
2. $y=x^{2} ; x=-2, x=3$
3. $y=2 x^{2}+3 ; x=0, x=2$
4. $\frac{y^{2}}{4}=x ; \quad x=1, x=5$
5. $x y=3 ; x=2, x=3$

In Problems 6 to 8, determine the volume of the solid of revolution formed by revolving the areas enclosed by the given curves, the y-axis and the given ordinates through one revolution about the y-axis.
6. $y=x^{2} ; \quad y=1, y=3$
7. $y=3 x^{2}-1 ; \quad y=2, y=4$
8. $y=\frac{2}{x} ; \quad y=1, y=3$

Exercise 18. Volumes of solids of revolution

(Answers to volumes are in cubic units and in terms of π.)
In Problems 1 and 2, determine the volume of the solid of revolution formed by revolving the areas enclosed by the given curve, the x-axis and the given ordinates through one revolution about the x-axis.

1. $y=4 e^{x} ; x=0 ; x=2$
2. $y=\sec x ; \quad x=0, \quad x=\frac{\pi}{4}$

In Problems 3 and 4, determine the volume of the solid of revolution formed by revolving the areas enclosed by the given curves, the y-axis and the given ordinates through one revolution about the y-axis.
3. $x^{2}+y^{2}=16 ; \quad y=0, y=4$
4. $x \sqrt{y}=2 ; \quad y=2, y=3$
5. Determine the volume of a plug formed by the frustum of a sphere of radius 6 cm which lies between two parallel planes at 2 cm and 4 cm from the centre and on the same side of it.
(The equation of a circle, centre 0 , radius r is $x^{2}+y^{2}=r^{2}$.)
6. The area enclosed between the two curves $x^{2}=3 y$ and $y^{2}=3 x$ is rotated about the x-axis. Determine the volume of the solid formed
7. The portion of the curve $y=x^{2}+\frac{1}{x}$ lying
between $x=1$ and $x=3$ is revolved 360° about the x-axis. Determine the volume of the solid formed
Calculate the volume of the frustum of a sphere of radius 5 cm that lies between two parallel planes at 3 cm and 2 cm from the centre and on opposite sides of it

