Exercise 17. Parametric Equations

1. Given $x=3 t-1$ a n d $y=t(t-1)$, determine $\frac{d y}{d x}$ in terms of t
2. A parabola has parametric equations: $x=t^{2}$, $y=2 t$. Evaluate $\frac{d y}{d x}$ when $t=0.5$
3. The parametric equations for an ellipse are $x=4 \cos \theta, y=\sin \theta$. Determine (a) $\frac{d y}{d x}$ (b) $\frac{d^{2} y}{d x^{2}}$
4. Evaluate $\frac{d y}{d x}$ at $\theta=\frac{\pi}{6}$ radians for the hyperbola whose parametric equations are x $=3 \mathrm{sec} \theta, y=6 \tan \theta$
5. The parametric equations for a rectangular hyperbola are $x=2 t, y=\frac{2}{t}$. Evaluate $\frac{d y}{d x}$ when $t=0.40$

Solution:

Solution:

Solution:

Solution:

1. A cycloid has parametric equations $x=2(\theta-\sin \theta), \quad y=2(1-\cos \theta)$. Evaluate, at $\theta=0.62 \mathrm{rad}$, correct to 4 significant figures, (a) $\frac{d y}{d x}$ (b) $\frac{d^{2} y}{d x^{2}}$

The equation of the normal drawn to a curve at point $\left(x_{1}, y_{1}\right)$ is given by:

$$
y-y_{1}=-\frac{1}{\frac{d y_{1}}{d x_{1}}}\left(x-x_{1}\right)
$$

Use this in Problems 2 and 3.
2. Determine the equation of the normal drawn to the parabola $x=\frac{1}{4} t^{2}, y=\frac{1}{2} t$ at $t=2$.
3. Find the equation of the normal drawn to the cycloid $x=2(\theta-\sin \theta), y=2(1-\cos \theta)$ at $\theta=\frac{\pi}{2} \mathrm{rad} . \quad[y=-x+\pi]$

Solution:

保

:

