Exercise 17. Parametric Equations

1. Given x = 3t - 1 and y = t (t - 1), determine **Solution:** $\frac{dy}{dx}$ in terms of t

2. A parabola has parametric equations: $x = t^2$, Solution: y=2t. E v a l u a t e $\frac{dy}{dx}$ when t=0.5

- 3. The parametric equations for an ellipse are $x = 4\cos\theta$, $y = \sin\theta$. Determine (a) $\frac{dy}{dx}$ (b) $\frac{d^2y}{dx^2}$
- 4. Evaluate $\frac{dy}{dx}$ at $\theta = \frac{\pi}{6}$ radians for the hyperbola whose parametric equations are x=3 s e c θ , y = 6 t a n θ

Solution:

5. The parametric equations for a rectangular hyperbola are x = 2t, $y = \frac{2}{t}$. Evaluate $\frac{dy}{dx}$ when t = 0.40

Exercise 18. Differentiation of Parametric Equations

1. A cycloid has parametric equations $x = 2(\theta - \sin \theta), y = 2(1 - \cos \theta)$. Evaluate, at $\theta = 0.62$ rad, correct to 4 significant figures, (a) $\frac{dy}{dx}$ (b) $\frac{d^2y}{dx^2}$

The equation of the normal drawn to a curve at point (x_1, y_1) is given by:

$$y - y_1 = -\frac{1}{\frac{dy_1}{dx_1}}(x - x_1)$$

Use this in Problems 2 and 3.

2. Determine the equation of the normal drawn to the parabola $x = \frac{1}{4}t^2$, $y = \frac{1}{2}t$ at t = 2.

Solution:

Solution:

3. Find the equation of the normal drawn to the cycloid $x=2(\theta - \sin \theta), y=2(1-\cos \theta)$ at $\theta = \frac{\pi}{2}$ rad. $[y=-x+\pi]$

Solution: