Exercise 14. Area under curves

Unless otherwise stated all answers are in square units.

1. Shown by integration that the area of the triangle formed by the line $y=2 x$, the ordinates $x=0$ and $x=4$ and the x-axis is 16 square units.
2. Sketch the curve $y=3 x^{2}+1$ between $x=-2$ and $x=4$. Determine by integration the area enclosed by the curve, the x-axis and ordinates $x=-1$ and $x=3$. Use an approximate method to find the area and compare your result with that obtained by integration.

In Problems 3 to 5, find the area enclosed between the given curves, the horizontal axis and the given ordinates.
3. $y=5 x ; x=1, x=4$
4. $y=2 x^{2}-x+1 ; \quad x=-1, x=2$
5. $y=2 \sin 2 \theta ; \quad \theta=0, \theta=\frac{\pi}{4}$

Exercise 15. Areas under curves

In Problems 1 and 2, find the area enclosed between the given curves, the horizontal axis and the given ordinates.

1. $y=2 x^{3} ; x=-2, x=2$
2. $x y=4 ; x=1, x=4$
3. The force F newtons acting on a body at a distance x metres from a fixed point is given by: $F=3 x+2 x^{2}$. If work done $=$ $\int_{x_{1}}^{x_{2}} F d x$, determine the work done when the body moves from the position where $x=1 \mathrm{~m}$ to that where $x=3 \mathrm{~m}$
4. Find the area between the curve $y=4 x-x^{2}$ and the x-axis
5. Determine the area enclosed by the curve $y=5 x^{2}+2$, the x-axis and the ordinates $x=0$ and $x=3$. Find also the area enclosed by the curve and the y-axis between the same limits
6. Calculate the area enclosed between $y=x^{3}-4 x^{2}-5 x$ and the x-axis

Exercise 16. Areas between curves

1. Determine the coordinates of the points of intersection and the area enclosed between the parabolas $y^{2}=3 x$ and $x^{2}=3 y$
2. Sketch the curves $y=x^{2}+3$ and $y=7-3 x$ and determine the area enclosed by them
3. Determine the area enclosed by the curves $y=\sin x$ and $y=\cos x$ and the y-axis
4. Determine the area enclosed by the three straight lines $y=3 x, 2 y=x$ and $y+2 x=5$

Solution:

Solution:

Solution:

Solution:

