Exercise 12. Rates of change

1. An alternating current, i amperes, is given by $i=10 \sin 2 \pi f t$, where f is the frequency in hertz and t the time in seconds. Determine the rate of change of current when $t=20 \mathrm{~ms}$, given that $f=150 \mathrm{~Hz}$.
2. The luminous intensity, I candelas, of a lamp is given by $I=6 \times 10^{-4} \mathrm{~V}^{2}$, where V is the voltage. Find (a) the rate of change of luminous intensity with voltage when $V=200$ volts, and (b) the voltage at which the light is increasing at a rate of 0.3 candelas per volt.
3. The voltage across the plates of a capacitor at any time t seconds is given by $v=V e^{-t / C R}$, where V, C and R are constants. Given $V=300$ volts, $C=0.12 \times 10^{-6}$ farads and $R=4 \times 10^{6}$ ohms find (a) the initial rate of change of voltage, and (b) the rate of change of voltage after 0.5 s .
4. The pressure p of the atmosphere at height h above ground level is given by $p=p_{0} e^{-h / c}$, where p_{0} is the pressure at ground level and c is a constant. Determine the rate of change of pressure with height when $p_{0}=1.013 \times 10^{5}$ Pascals and $c=6.05 \times 10^{4}$ at 1450 metres.

Solution:

Solution:

Solution:

Solution:

Exercise 13. Velocity and acceleration

1. A missile fired from ground level rises x metres vertically upwards in t seconds and $x=100 t-\frac{25}{2} t^{2}$. Find (a) the initial velocity of the missile, (b) the time when the height of the missile is a maximum, (c) the maximum height reached, (d) the velocity with which the missile strikes the ground
2. The distance s metres travelled by a car in t seconds after the brakes are applied is given by $s=25 t-2.5 t^{2}$. Find (a) the speed of the car (in km / h) when the brakes are applied, (b) the distance the car travels before it stops
3. The equation $\theta=10 \pi+24 t-3 t^{2}$ gives the angle θ, in radians, through which a wheel turns in t seconds. Determine (a) the time the wheel takes to come to rest, (b) the angle turned through in the last second of movement
4. At any time t seconds the distance x metres of a particle moving in a straight line from a fixed point is given by: $x=4 t+\ln (1-t)$. Determine (a) the initial velocity and acceleration, (b) the velocity and acceleration after 1.5 s , and (c) the time when the velocity is zero
5. The angular displacement θ of a rotating disc is given by: $\theta=6 \sin \frac{t}{4}$, where t is the time in seconds. Determine (a) the angular velocity of the disc when t is 1.5 s , (b) the angular acceleration when t is 5.5 s , and (c) the first time when the angular velocity is zero
6. $x=\frac{20 t^{3}}{3}-\frac{23 t^{2}}{2}+6 t+5$ represents the distance, x metres, moved by a body in t seconds. Determine (a) the velocity and acceleration at the start, (b) the velocity and acceleration when $t=3 \mathrm{~s}$, (c) the values of t when the body is at rest, (d) the value of t when the acceleration is $37 \mathrm{~m} / \mathrm{s}^{2}$, and (e) the distance travelled in the third second

Solution:

Solution:

Solution:

Solution:

Solution:

Solution:

Exercise 14. Turning Points

In Problems 1 to 10, find the turning points and distinguish between them.

1. $y=x^{2}-6 x$
2. $y=8+2 x-x^{2}$
3. $y=x^{2}-4 x+3$
4. $y=3+3 x^{2}-x^{3}$
5. $y=3 x^{2}-4 x+2$
6. $x=\theta(6-\theta)$
7. $y=4 x^{3}+3 x^{2}-60 x-12$
8. $y=5 x-2 \ln x$
9. $y=2 x-e^{x}$
10. $y=t^{3}-\frac{t^{2}}{2}-2 t+4$
11. The speed, v, of a car (in m / s) is related to time $t \mathrm{~s}$ by the equation $v=3+12 t-3 t^{2}$. Determine the maximum speed of the car in km/h
12. Determine the maximum area of a rectangular piece of land that can be enclosed by 1200 m of fencing
13. A shell is fired vertically upwards and its vertical height, x metres, is given by: $x=24 t-3 t^{2}$, where t is the time in seconds. Determine the maximum height reached
14. A lidless box with square ends is to be made from a thin sheet of metal. Determine the least area of the metal for which the volume of the box is $3.5 \mathrm{~m}^{3}$
15. A closed cylindrical container has a surface area of $400 \mathrm{~cm}^{2}$. Determine the dimensions for maximum volume.
16. Calculate the height of a cylinder of maximum volume that can be cut from a cone of height 20 cm and base radius 80 cm .
17. The power developed in a resistor R by a battery of emf E and internal resistance r is given by $P=\frac{E^{2} R}{(R+r)^{2}}$. Differentiate P with respect to R and show that the power is a maximum when $R=r$.
18. Find the height and radius of a closed cylinder of volume $125 \mathrm{~cm}^{3}$ which has the least surface area.
19. Resistance to motion, F, of a moving vehicle, is given by: $F=\begin{gathered}5 \\ x\end{gathered}+100 x$. Determine the minimum value of resistance.
20. An electrical voltage E is given by: $E=(15 \sin 50 \pi t+40 \cos 50 \pi t)$ volts, where t is the time in seconds. Determine the maximum value of voltage.

Solution:

Exercise 16. Tangents \& Normals

Find (a) the equation of the tangent, and (b) the equation of the normal

1. $y=2 x^{2}$ at the point $(1,2)$
2. $y=3 x^{2}-2 x$ at the point $(2,8)$
3. $y=\frac{x^{3}}{2}$ at the point $\left(-1,-\frac{1}{2}\right)$
4. $y=1+x-x^{2}$ at the point $(-2,-5)$
5. $\theta=\frac{1}{t}$ at the point $\left(3, \frac{1}{3}\right)$
