Exercise 12. Differentiation of parametric equations

1. Given $x=3 t-1$ and $y=t(t-1)$, determine $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t.
2. A parabola has parametric equations: $x=t^{2}, \quad y=2 t$. Evaluate $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when $t=0.5$
3. The parametric equations for an ellipse are $x=4 \cos \theta, y=\sin \theta$. Determine (a) $\frac{\mathrm{d} y}{\mathrm{~d} x}$ (b) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$
4. Evaluate $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $\theta=\frac{\pi}{6}$ radians for the hyperbola whose parametric equations are x $=3 \sec \theta, y=6 \tan \theta$.
5. The parametric equations for a rectangular hyperbola are $x=2 t, y=\frac{2}{t}$. Evaluate $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when $t=0.40$

The equation of a tangent drawn to a curve at point $\left(x_{1}, y_{1}\right)$ is given by:

$$
y-y_{1}=\frac{\mathrm{d} y_{1}}{\mathrm{~d} x_{1}}\left(x-x_{1}\right)
$$

Use this in Problems 6 and 7.
6. Determine the equation of the tangent drawn to the ellipse $x=3 \cos \theta, y=2 \sin \theta$ at $\theta=\frac{\pi}{6}$.
7. Determine the equation of the tangent drawn to the rectangular hyperbola $x=5 t, y=\frac{5}{t}$ at $t=2$.

Exercise 13. Differentiation of parametric equations

1. A cycloid has parametric equations $x=2(\theta-\sin \theta), \quad y=2(1-\cos \theta)$. Evaluate, at $\theta=0.62 \mathrm{rad}$, correct to 4 significant figures, (a) $\frac{\mathrm{d} y}{\mathrm{~d} x}$ (b) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$

The equation of the normal drawn to a curve at point $\left(x_{1}, y_{1}\right)$ is given by: $y-y_{1}=-\frac{1}{\frac{\mathrm{~d} y_{1}}{\mathrm{~d} x_{1}}}\left(x-x_{1}\right)$

Use this in Problems 2 and 3.
2. Determine the equation of the normal drawn to the parabola $x=\frac{1}{4} t^{2}, y=\frac{1}{2} t$ at $t=2$.
3. Find the equation of the normal drawn to the cycloid $x=2(\theta-\sin \theta), y=2(1-\cos \theta)$ at $\theta=\frac{\pi}{2} \mathrm{rad}$.
4. Determine the value of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$, correct to 4 significant figures, at $\theta=\frac{\pi}{6} \mathrm{rad}$ for the cardioid $x=5(2 \theta-\cos 2 \theta), y=5(2 \sin \theta-\sin 2 \theta)$.
5. The radius of curvature, ρ, of part of a surface when determining the surface tension of a liquid is given by:

$$
\rho=\frac{\left[1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}\right]^{3 / 2}}{\frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}}
$$

Find the radius of curvature (correct to 4 significant figures) of the part of the surface having parametric equations
(a) $x=3 t, y=\frac{3}{t}$ at the point $t=\frac{1}{2}$
(b) $x=4 \cos ^{3} t, \quad y=4 \sin ^{3} t$ at $t=\frac{\pi}{6} \mathrm{rad}$

