Exercise 1. Functional Notation

1. If $f(x)=6 x^{2}-2 x+1$ find $f(0), f(1)$, $f(2), f(-1)$ and $f(-3)$.
2. If $f(x)=2 x^{2}+5 x-7$ find $f(1), f(2), f(-1)$, $f(2)-f(-1)$.
3. Given $f(x)=3 x^{3}+2 x^{2}-3 x+2$ prove that $f(1)=\frac{1}{7} f(2)$
4. If $f(x)=-x^{2}+3 x+6$ find $f(2), f(2+a)$, $f(2+a)-f(2)$ and $\frac{f(2+a)-f(2)}{a}$

Exercise 2. Gradient of a Curve

1. Plot the curve $f(x)=4 x^{2}-1$ for values of x from $x=-1$ to $x=+4$. Label the coordinates $(3, f(3))$ and $(1, f(1))$ as J and K, respectively. Join points J and K to form the chord $J K$. Determine the gradient of chord $J K$. By moving J nearer and nearer to K determine the gradient of the tangent of the curve at K.

Exercise 3 Differentiation from first principles

In Problems 1 to 12, differentiate from first principles.

1. $y=x$
2. $y=7 x$
3. $y=4 x^{2}$
4. $y=5 x^{3}$
5. $y=-2 x^{2}+3 x-12$
6. $y=23$
7. $f(x)=9 x$
8. $f(x)=\frac{2 x}{3}$
9. $f(x)=9 x^{2}$
10. $f(x)=-7 x^{3}$
11. $f(x)=x^{2}+15 x-4$
12. $f(x)=4$
13. Determine $\frac{d}{d x}\left(4 x^{3}\right)$ from first principles
14. Find $\frac{d}{d x}\left(3 x^{2}+5\right)$ from first principles

Exercise 4. Differentiation of $y=a x^{n}$ by the general rule

In Problems 1 to 8, determine the differential coefficients with respect to the variable.

1. $y=7 x^{4}$
2. $y=\sqrt{x}$
3. $y=\sqrt{t^{3}}$
4. $y=6+\frac{1}{x^{3}}$
5. $y=3 x-\frac{1}{\sqrt{x}}+\frac{1}{x}$
6. $y=\frac{5}{x^{2}}-\frac{1}{\sqrt{x^{7}}}+2$
7. $y=3(t-2)^{2}$
8. $y=(x+1)^{3}$

Exercise 5. Differentiation of sine and cosine functions

1. Differentiate with respect to x : (a) $y=4 \sin 3 x$
(b) $y=2 \cos 6 x$
2. Given $f(\theta)=2 \sin 3 \theta-5 \cos 2 \theta$, find $f^{\prime}(\theta)$
3. An alternating current is given by
$i=5 \sin 100 t$ amperes, where t is the time in seconds. Determine the rate of change of current when $t=0.01$ seconds
4. $v=50 \sin 40 t$ volts represents an alternating voltage where t is the time in seconds. At a time of 20×10^{-3} seconds, find the rate of change of voltage
5. If $f(t)=3 \sin (4 t+0.12)-2 \cos (3 t-0.72)$ determine $f^{\prime}(t)$

Exercise 6. Differentiation of $e^{a x}$ and $\ln a x$

1. Differentiate with respect to x :
(a) $y=5 e^{3 x}$
(b) $y=\frac{2}{7 e^{2 x}}$
2. Given $f(\theta)=5 \ln 2 \theta-4 \ln 3 \theta$, determine $f^{\prime}(\theta)$
3. If $f(t)=41 \mathrm{n} t+2$, evaluate $f^{\prime}(t)$ when $t=$ 0.25
4. Evaluate $\frac{d y}{d x}$ when $x=1$, given
$y=3 e^{4 x}-\frac{5}{2 e^{3 x}}+8 \ln 5 x$. Give the answer correct to 3 significant figures.
