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Module 8 - Partial Differentiation

A. Introduction to Partial Derivatives

In engineering, it sometimes happens that the varia-
tion of one quantity depends on changes taking place
in two, or more, other quantities. For example, the
volume V of a cylinder is given by V= πr2h. The
volume will change if either radius r or height h
is changed. The formula for volume may be stated
mathematically as V= f (r, h) which means ‘V is
some function of r and h’. Some other practical
examples include:

(i) time of oscillation, t = 2π

√
l

g
i.e. t = f (l, g).

(ii) torque T = Iα, i.e. T = f (I , α).

(iii) pressure of an ideal gas p = mRT

V
i.e. p = f (T , V ).

(iv) resonant frequency fr = 1

2π
√

LC
i.e. fr = f (L, C), and so on.

When differentiating a function having two vari-
ables, one variable is kept constant and the dif-
ferential coefficient of the other variable is found
with respect to that variable. The differential coef-
ficient obtained is called a partial derivative of
the function.

B. First order partial derivatives

A ‘curly dee’, ∂, is used to denote a differential coef-
ficient in an expression containing more than one
variable.

Hence if V = πr2h then
∂V

∂r
means ‘the partial

derivative of V with respect to r, with h remaining
constant’. Thus,

∂V

∂r
= (πh)

d

dr
(r2) = (πh)(2r) = 2πrh.

Similarly,
∂V

∂h
means ‘the partial derivative of V with

respect to h, with r remaining constant’. Thus,

∂V

∂h
= (πr2)

d

dh
(h) = (πr2)(1) = πr2.

∂V

∂r
and

∂V

∂h
are examples of first order partial

derivatives, since n = 1 when written in the form
∂nV

∂rn
.

First order partial derivatives are used when finding 
the total differential, rates of change and errors for 
functions of two or more variables, when finding 
maxima, minima and saddle points for functions of 
two variables, and with partial differential 
equations.

Problem 1. If z = 5x4 + 2x3y2 − 3y find

(a)
∂z

∂x
and (b)

∂z

∂y

(a) To find
∂z

∂x
, y is kept constant.

Since z = 5x4 + (2y2)x3 − (3y)

then,
∂z

∂x
= d

dx
(5x4) + (2y2)

d

dx
(x3) − (3y)

d

dx
(1)

= 20x3 + (2y2)(3x2) − 0.

Hence
∂z
∂x

= 20x3 + 6x2y2.

(b) To find
∂z

∂y
, x is kept constant.

Since z = (5x4) + (2x3)y2 − 3y

then,

∂z

∂y
= (5x4)

d

dy
(1) + (2x3)

d

dy
(y2) − 3

d

dy
(y)

= 0 + (2x3)(2y) − 3
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Hence
∂z
∂y

= 4x3y − 3.

Problem 2. Given y = 4 sin 3x cos 2t, find
∂y

∂x

and
∂y

∂t
.

To find
∂y

∂x
, t is kept constant

Hence
∂y

∂x
= (4 cos 2t)

d

dx
(sin 3x)

= (4 cos 2t)(3 cos 3x)

i.e.
∂y
∂x

= 12 cos 3x cos 2t

To find
∂y

∂t
, x is kept constant.

Hence
∂y

∂t
= (4 sin 3x)

d

dt
(cos 2t)

= (4 sin 3x)(−2 sin 2t)

i.e.
∂y
∂t

= −8 sin 3x sin 2t

Problem 3. If z = sin xy show that

1

y

∂z

∂x
= 1

x

∂z

∂y

∂z

∂x
= y cos xy, since y is kept constant.

∂z

∂y
= x cos xy, since x is kept constant.

1

y

∂z

∂x
=
(

1

y

)

(y cos xy) = cos xy

and
1

x

∂z

∂y
=
(

1

x

)

(x cos xy) = cos xy.

Hence
1
y

∂z
∂x

= 1
x

∂z
∂y

Problem 4. Determine
∂z

∂x
and

∂z

∂y
when

z = 1
√

(x2 + y2)
.

z = 1
√

(x2 + y2)
= (x2 + y2)

−1
2

∂z

∂x
= −1

2
(x2 + y2)

−3
2 (2x), by the function of a

function rule (keeping y constant)

= −x

(x2 + y2)
3
2

= −x
√

(x2 + y2)3

∂z

∂y
= −1

2
(x2 + y2)

−3
2 (2y), (keeping x constant)

= −y
√

(x2 + y2)3

Problem 5. Pressure p of a mass of gas is given
by pV = mRT , where m and R are constants,
V is the volume and T the temperature. Find

expressions for
∂p

∂T
and

∂p

∂V

Since pV = mRT then p = mRT

V

To find
∂p

∂T
, V is kept constant.

Hence
∂p

∂T
=
(

mR

V

)
d

dT
(T ) = mR

V

To find
∂p

∂V
, T is kept constant.

Hence
∂p

∂V
= (mRT )

d

dV

(
1

V

)

= (mRT )(−V−2) = −mRT
V2

Problem 6. The time of oscillation, t, of a pen-

dulum is given by t = 2π

√
l

g
where l is the length

of the pendulum and g the free fall acceleration

due to gravity. Determine
∂t

∂l
and

∂t

∂g

To find
∂t

∂l
, g is kept constant.
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t = 2π

√
l

g
=
(

2π√
g

)√
l =

(
2π√

g

)

l
1
2

Hence
∂t

∂l
=
(

2π√
g

)
d

dl
(l

1
2 ) =

(
2π√

g

)(
1

2
l

−1
2

)

=
(

2π√
g

)(
1

2
√

l

)

= π√
lg

To find
∂t

∂g
, l is kept constant

t = 2π

√
l

g
= (2π

√
l)

(
1√
g

)

= (2π
√

l)g
−1
2

Hence
∂t

∂g
= (2π

√
l)

(

−1

2
g

−3
2

)

= (2π
√

l)

(
−1

2
√

g3

)

= −π
√

l
√

g3
= −π

√
l

g3

Exercise 23. First order partial 
derivatives
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C. Second Order Partial Derivatives

As with ordinary differentiation, where a differen-
tial coefficient may be differentiated again, a partial
derivative may be differentiated partially again to
give higher order partial derivatives.

(i) Differentiating
∂V

∂r
of Section 34.2 with respect

to r, keeping h constant, gives
∂

∂r

(
∂V

∂r

)

which

is written as
∂2V

∂r2

Thus if V = πr2h,

then
∂2V

∂r2 = ∂

∂r
(2πrh) = 2πh.

(ii) Differentiating
∂V

∂h
with respect to h, keeping

r constant, gives
∂

∂h

(
∂V

∂h

)

which is written as

∂2V

∂h2

Thus
∂2V

∂h2 = ∂

∂h
(πr2) = 0.

(iii) Differentiating
∂V

∂h
with respect to r, keeping

h constant, gives
∂

∂r

(
∂V

∂h

)

which is written as

∂2V

∂r∂h
. Thus,

∂2V

∂r∂h
= ∂

∂r

(
∂V

∂h

)

= ∂

∂r
(πr2) = 2πr.

(iv) Differentiating
∂V

∂r
with respect to h, keeping r

constant, gives
∂

∂h

(
∂V

∂r

)

, which is written as

∂2V

∂h∂r
. Thus,

∂2V

∂h∂r
= ∂

∂h

(
∂V

∂r

)

= ∂

∂h
(2πrh) = 2πr.

(v)
∂2V

∂r2 ,
∂2V

∂h2 ,
∂2V

∂r∂h
and

∂2V

∂h∂r
are examples of

second order partial derivatives.

(vi) It is seen from (iii) and (iv) that
∂2V

∂r∂h
= ∂2V

∂h∂r
and such a result is always true for continuous
functions (i.e. a graph of the function which has
no sudden jumps or breaks).

Second order partial derivatives are used in the 
solution of partial differential equations, in waveg-
uide theory, in such areas of thermodynamics cov-
ering entropy and the continuity theorem, and when 
finding maxima, minima and saddle points for func-
tions of two variables.

Problem 7. Given z = 4x2y3 − 2x3 + 7y2 find

(a)
∂2z

∂x2 (b)
∂2z

∂y2 (c)
∂2z

∂x∂y
(d)

∂2z

∂y∂x

(a)
∂z

∂x
= 8xy3 − 6x2

∂2z

∂x2 = ∂

∂x

(
∂z

∂x

)

= ∂

∂x
(8xy3 − 6x2)

= 8y3− 12 x

(b)
∂z

∂y
= 12x2y2 + 14y

∂2z

∂y2 = ∂

∂y

(
∂z

∂y

)

= ∂

∂y
(12x2y2 + 14y)

= 24x2y + 14

(c)
∂2z

∂x∂y
= ∂

∂x

(
∂z

∂y

)

= ∂

∂x
(12x2y2+14y) = 24xy2

(d)
∂2z

∂y∂x
= ∂

∂y

(
∂z

∂x

)

= ∂

∂y
(8xy3 − 6x2) = 24xy2
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[

It is noted that
∂2z

∂x∂y
= ∂2z

∂y∂x

]

Problem 8. Show that when z = e−t sin θ,

(a)
∂2z

∂t2 = − ∂2z

∂θ2 , and (b)
∂2z

∂t∂θ
= ∂2z

∂θ∂t

(a)
∂z

∂t
= −e−t sin θ and

∂2z

∂t2 = e−t sin θ

∂z

∂θ
= e−t cos θ and

∂2z

∂θ2 = − e−t sin θ

Hence
∂2z
∂t2 = − ∂2z

∂θ2

(b)
∂2z

∂t∂θ
= ∂

∂t

(
∂z

∂θ

)

= ∂

∂t
( e−t cos θ)

= −e−t cos θ

∂2z

∂θ∂t
= ∂

∂θ

(
∂z

∂t

)

= ∂

∂θ
(−e−t sin θ)

= −e−t cos θ

Hence
∂2z
∂t∂θ

= ∂2z
∂θ∂t

Problem 9. Show that if z = x

y
ln y, then

(a)
∂z

∂y
= x

∂2z

∂y∂x
and (b) evaluate

∂2z

∂y2 when

x = −3 and y = 1.

(a) To find
∂z

∂x
, y is kept constant.

Hence
∂z

∂x
=
(

1

y
ln y

)
d

dx
(x) = 1

y
ln y

To find
∂z

∂y
, x is kept constant.

Hence
∂z

∂y
= (x)

d

dy

(
ln y

y

)

= (x)

⎧
⎪⎪⎨

⎪⎪⎩

(y)

(
1

y

)

− ( ln y)(1)

y2

⎫
⎪⎪⎬

⎪⎪⎭

using the quotient rule

= x

(
1 − ln y

y2

)

= x

y2 (1 − ln y)

∂2z

∂y∂x
= ∂

∂y

(
∂z

∂x

)

= ∂

∂y

(
ln y

y

)

=
(y)

(
1

y

)

− ( ln y)(1)

y2

using the quotient rule

= 1

y2 (1 − ln y)

Hence x
∂2z
∂y∂x

= x
y2 (1 − ln y) = ∂z

∂y

(b) ∂2z

∂y2 = ∂

∂y

(
∂z

∂y

)

= ∂

∂y

{
x

y2 (1 − ln y)

}

= (x)
d

dy

(
1 − ln y

y2

)

= (x)

⎧
⎪⎪⎨

⎪⎪⎩

(y2)

(

−1

y

)

− (1 − ln y)(2y)

y4

⎫
⎪⎪⎬

⎪⎪⎭

using the quotient rule

= x

y4 [ −y − 2y + 2y ln y]

= xy

y4 [ −3 + 2 ln y] = x

y3 (2 ln y − 3)

When x = −3 and y = 1,

∂2z

∂y2 = (−3)

(1)3 (2ln 1− 3) = (−3)(−3) = 9

Exercise 24. Second order partial derivatives




