Module 8 Integration using Algebraic Substitutions

A. Introduction

Functions that require integrating are not always in the 'standard form'. However, it is often possible to change a function into a form which can be integrated by using either:

- (i) an algebraic substitution
- (ii) trigonometric substitutions,
- (iii) partial fractions,
- (iv) the $t = \tan \frac{\theta}{2}$ substitution, or
- (v) integration by parts

B. Algebraic substitutions

With **algebraic substitutions**, the substitution usually made is to let u be equal to f(x) such that f(u) du is a standard integral. It is found that integrals of the forms:

$$k \int [f(x)]^n f'(x) dx$$
 and $k \int \frac{f'(x)^n}{[f(x)]} dx$

(where k and n are constants) can both be integrated by substituting u for f(x).

Solved problems on integration using algebraic substitutions

Problem 1. Determine: $\int \cos(3x+7) dx$

 $\int \cos(3x+7) dx$ is not a standard integral of the form shown in Table 1, thus an algebraic substitution is made.

Let u=3x+7 then $\frac{du}{dx}=3$ and rearranging gives $dx = \frac{du}{3}$

Hence
$$\int \cos(3x+7) dx = \int (\cos u) \frac{du}{3}$$
$$= \int \frac{1}{3} \cos u du,$$

which is a standard integral

$$= \frac{1}{3}\sin u + c$$

Rewriting u as (3x + 7) gives:

$$\int \cos(3x+7) \, dx = \frac{1}{3} \sin(3x+7) + c,$$

which may be checked by differentiating it.

Problem 2. Find:
$$\int (2x-5)^7 dx$$

(2x-5) may be multiplied by itself 7 times and then each term of the result integrated. However, this would be a lengthy process, and thus an algebraic substitution is made.

Let
$$u = (2x - 5)$$
 then $\frac{du}{dx} = 2$ and $dx = \frac{du}{2}$

Hence

$$\int (2x - 5)^7 dx = \int u^7 \frac{du}{2} = \frac{1}{2} \int u^7 du$$
$$= \frac{1}{2} \left(\frac{u^8}{8}\right) + c = \frac{1}{16} u^8 + c$$

Rewriting u as (2x-5) gives:

$$\int (2x-5)^7 dx = \frac{1}{16}(2x-5)^8 + c$$

Problem 3. Find:
$$\int \frac{4}{(5x-3)} dx$$

Let
$$u = (5x - 3)$$
 then $\frac{du}{dx} = 5$ and $dx = \frac{du}{5}$

Hence
$$\int \frac{4}{(5x-3)} dx = \int \frac{4}{u} \frac{du}{5} = \frac{4}{5} \int \frac{1}{u} du$$
$$= \frac{4}{5} \ln u + c$$
$$= \frac{4}{5} \ln(5x-3) + c$$

Problem 4. Evaluate: $\int_0^1 2e^{6x-1} dx$, correct to 4 significant figures

Let
$$u = 6x - 1$$
 then $\frac{du}{dx} = 6$ and $dx = \frac{du}{6}$

Hence
$$\int 2e^{6x-1}dx = \int 2e^u \frac{du}{6} = \frac{1}{3} \int e^u du$$

= $\frac{1}{3}e^u + c = \frac{1}{3}e^{6x-1} + c$

Thus
$$\int_0^1 2e^{6x-1} dx = \frac{1}{3} \left[e^{6x-1} \right]_0^1$$
$$= \frac{1}{3} [e^5 - e^{-1}] = 49.35,$$

correct to 4 significant figures.

Problem 5. Determine: $\int 3x(4x^2+3)^5 dx$

Let
$$u = (4x^2 + 3)$$
 then $\frac{du}{dx} = 8x$ and $dx = \frac{du}{8x}$

$$\int 3x (4x^2 + 3)^5 dx = \int 3x (u)^5 \frac{du}{8x}$$
$$= \frac{3}{8} \int u^5 du, \text{ by cancelling}$$

The original variable 'x' has been completely removed and the integral is now only in terms of u and is a standard integral.

Hence
$$\frac{3}{8} \int u^5 du = \frac{3}{8} \left(\frac{u^6}{6} \right) + c = \frac{1}{16} u^6 + c$$

= $\frac{1}{16} (4x^2 + 3)^6 + c$

Problem 6. Evaluate: $\int_0^{\pi/6} 24 \sin^5 \theta \cos \theta d\theta$

Let
$$u = \sin \theta$$
 then $\frac{du}{d\theta} = \cos \theta$ and $d\theta = \frac{du}{\cos \theta}$

Hence
$$\int 24 \sin^5 \theta \cos \theta \, d\theta$$
$$= \int 24u^5 \cos \theta \, \frac{du}{\cos \theta}$$
$$= 24 \int u^5 du, \text{ by cancelling}$$
$$= 24 \frac{u^6}{6} + c = 4u^6 + c = 4(\sin \theta)^6 + c$$
$$= 4 \sin^6 \theta + c$$

Thus
$$\int_0^{\pi/6} 24 \sin^5 \theta \cos \theta \, d\theta$$
$$= \left[4 \sin^6 \theta \right]_0^{\pi/6} = 4 \left[\left(\sin \frac{\pi}{6} \right)^6 - (\sin 0)^6 \right]$$
$$= 4 \left[\left(\frac{1}{2} \right)^6 - 0 \right] = \frac{1}{16} \text{ or } \mathbf{0.0625}$$

Exercise 3. Integration using algebraic substitutions

Solved problems on integration using algebraic substitutions

Problem 7. Find:
$$\int \frac{x}{2+3x^2} dx$$

Let
$$u = 2 + 3x^2$$
 then $\frac{du}{dx} = 6x$ and $dx = \frac{du}{6x}$

Hence
$$\int \frac{x}{2+3x^2} dx$$

$$= \int \frac{x}{u} \frac{du}{6x} = \frac{1}{6} \int \frac{1}{u} du, \text{ by cancelling,}$$

$$= \frac{1}{6} \ln u + x$$

$$= \frac{1}{6} \ln(2+3x^2) + c$$

Problem 8. Determine:
$$\int \frac{2x}{\sqrt{4x^2 - 1}} dx$$

Let
$$u = 4x^2 - 1$$
 then $\frac{du}{dx} = 8x$ and $dx = \frac{du}{8x}$

Hence
$$\int \frac{2x}{\sqrt{4x^2 - 1}} dx$$

$$= \int \frac{2x}{\sqrt{u}} \frac{du}{8x} = \frac{1}{4} \int \frac{1}{\sqrt{u}} du, \text{ by cancelling}$$

$$= \frac{1}{4} \int u^{-1/2} du$$

$$= \frac{1}{4} \left[\frac{u^{(-1/2)+1}}{-\frac{1}{2} + 1} \right] + c = \frac{1}{4} \left[\frac{u^{1/2}}{\frac{1}{2}} \right] + c$$

$$= \frac{1}{2} \sqrt{u} + c = \frac{1}{2} \sqrt{4x^2 - 1} + c$$

Problem 9. Show that:

$$\int \tan\theta \, d\theta = \ln(\sec\theta) + c$$

$$\int \tan\theta \, d\theta = \int \frac{\sin\theta}{\cos\theta} d\theta$$

Let 11—cos A

then
$$\frac{du}{d\theta} = -\sin\theta$$
 and $d\theta = \frac{-du}{\sin\theta}$

Hence

$$\int \frac{\sin \theta}{\cos \theta} d\theta = \int \frac{\sin \theta}{u} \left(\frac{-du}{\sin \theta} \right)$$
$$= -\int \frac{1}{u} du = -\ln u + c$$
$$= -\ln(\cos \theta) + c$$
$$= \ln(\cos \theta)^{-1} + c,$$

by the laws of logarithms

Hence
$$\int \tan \theta \, d\theta = \ln(\sec \theta) + c$$
,
since $(\cos \theta)^{-1} = \frac{1}{\cos \theta} = \sec \theta$

C. Change of limits

When evaluating definite integrals involving substitutions it is sometimes more convenient to **change the limits** of the integral as shown in Problems 10 and 11.

Problem 10. Evaluate: $\int_{1}^{3} 5x \sqrt{2x^2 + 7} dx$, taking positive values of square roots only

Let
$$u = 2x^2 + 7$$
, then $\frac{du}{dx} = 4x$ and $dx = \frac{du}{4x}$

It is possible in this case to change the limits of integration. Thus when x = 3, $u = 2(3)^2 + 7 = 25$ and when x = 1, $u = 2(1)^2 + 7 = 9$

Hence
$$\int_{x=1}^{x=3} 5x \sqrt{2x^2 + 7} dx$$

$$= \int_{u=9}^{u=25} 5x \sqrt{u} \frac{du}{4x} = \frac{5}{4} \int_{9}^{25} \sqrt{u} du$$

$$= \frac{5}{4} \int_{9}^{25} u^{1/2} du$$

Thus the limits have been changed, and it is unnecessary to change the integral back in terms of x.

Thus
$$\int_{x=1}^{x=3} 5x \sqrt{2x^2 + 7} dx$$

$$= \frac{5}{4} \left[\frac{u^{3/2}}{3/2} \right]_9^{25} = \frac{5}{6} \left[\sqrt{u^3} \right]_9^{25}$$

$$= \frac{5}{6} [\sqrt{25^3} - \sqrt{9^3}] = \frac{5}{6} (125 - 27) = \mathbf{81} \frac{2}{3}$$

Problem 11. Evaluate: $\int_0^2 \frac{3x}{\sqrt{2x^2+1}} dx$, taking positive values of square roots only

Let
$$u = 2x^2 + 1$$
 then $\frac{du}{dx} = 4x$ and $dx = \frac{du}{4x}$

Hence
$$\int_0^2 \frac{3x}{\sqrt{2x^2 + 1}} dx = \int_{x=0}^{x=2} \frac{3x}{\sqrt{u}} \frac{du}{4x}$$
$$= \frac{3}{4} \int_{x=0}^{x=2} u^{-1/2} du$$

Since $u=2x^2+1$, when x=2, u=9 and when x=0, u=1

Thus
$$\frac{3}{4} \int_{x=0}^{x=2} u^{-1/2} du = \frac{3}{4} \int_{u=1}^{u=9} u^{-1/2} du$$
,

i.e. the limits have been changed

$$=\frac{3}{4}\left[\frac{u^{1/2}}{\frac{1}{2}}\right]_{1}^{9}=\frac{3}{2}[\sqrt{9}-\sqrt{1}]=3,$$

taking positive values of square roots only.

Exercise 4. Integration using algebraic substitutions