Module 5

Implicit Functions

Implicit functions

When an equation can be written in the form $y=f(x)$ it is said to be an explicit function of x. Examples of explicit functions include

$$
\begin{aligned}
y & =2 x^{3}-3 x+4, \quad y=2 x \ln x \\
\text { and } \quad y & =\frac{3 \mathrm{e}^{x}}{\cos x}
\end{aligned}
$$

In these examples y may be differentiated with respect to x by using standard derivatives, the product rule and the quotient rule of differentiation respectively.

Sometimes with equations involving, say, y and x, it is impossible to make y the subject of the formula. The equation is then called an implicit function and examples of such functions include $y^{3}+2 x^{2}=y^{2}-x$ and $\sin y=x^{2}+2 x y$.

A. Differentiating implicit functions

It is possible to differentiate an implicit function by using the function of a function rule, which may be stated as

$$
\frac{d u}{d x}=\frac{d u}{d y} \times \frac{d y}{d x}
$$

Thus, to differentiate y^{3} with respect to x, the substitution $u=y^{3}$ is made, from which, $\frac{d u}{d y}=3 y^{2}$.
Hence, $\frac{d}{d x}\left(y^{3}\right)=\left(3 y^{2}\right) \times \frac{d y}{d x}$, by the function of a function rule.

A simple rule for differentiating an implicit function is summarised as:

$$
\begin{equation*}
\frac{d}{d x}[f(y)]=\frac{d}{d y}[f(y)] \times \frac{d y}{d x} \tag{1}
\end{equation*}
$$

Problem 1. Differentiate the following functions with respect to x :

$$
\begin{array}{ll}
\text { (a) } 2 y^{4} & \text { (b) } \sin 3 t
\end{array}
$$

(a) Let $u=2 y^{4}$, then, by the function of a function rule:

$$
\begin{aligned}
\frac{d u}{d x}=\frac{d u}{d y} \times \frac{d y}{d x} & =\frac{d}{d y}\left(2 y^{4}\right) \times \frac{d y}{d x} \\
& =\mathbf{8 y}^{\mathbf{3}} \frac{d \boldsymbol{y}}{\boldsymbol{d} \boldsymbol{x}}
\end{aligned}
$$

(b) Let $u=\sin 3 t$, then, by the function of a function rule:

$$
\begin{aligned}
\frac{d u}{d x}=\frac{d u}{d t} \times \frac{d t}{d x} & =\frac{d}{d t}(\sin 3 t) \times \frac{d t}{d x} \\
& =\mathbf{3} \cos \mathbf{3} t \frac{d \boldsymbol{y}}{\boldsymbol{d x}}
\end{aligned}
$$

Problem 2. Differentiate the following functions with respect to x :

$$
\begin{array}{ll}
\text { (a) } 4 \ln 5 y & \text { (b) } \frac{1}{5} \mathrm{e}^{3 \theta-2}
\end{array}
$$

(a) Let $u=4 \ln 5 y$, then, by the function of a function rule:

$$
\begin{aligned}
\frac{d u}{d x}=\frac{d u}{d y} \times \frac{d y}{d x} & =\frac{d}{d y}(4 \ln 5 y) \times \frac{d y}{d x} \\
& =\frac{\mathbf{4}}{\boldsymbol{y}} \frac{d y}{d x}
\end{aligned}
$$

(b) Let $u=\frac{1}{5} e^{3 \theta-2}$, then, by the function of a function rule:

$$
\begin{aligned}
\frac{d u}{d x}=\frac{d u}{d \theta} \times \frac{d \theta}{d x} & =\frac{d}{d \theta}\left(\frac{1}{5} \mathrm{e}^{3 \theta-2}\right) \times \frac{d \theta}{d x} \\
& =\frac{\mathbf{3}}{\mathbf{5}} \mathbf{e}^{\mathbf{3} \theta-\mathbf{2}} \frac{d \theta}{\boldsymbol{d x}}
\end{aligned}
$$

Exercise 19. Differentiating implicit functions

B. Differentiating implicit functions containing products \& quotients

The product and quotient rules of differentiation must be applied when differentiating functions containing products and quotients of two variables.
For example, $\frac{d}{d x}\left(x^{2} y\right)=\left(x^{2}\right) \frac{d}{d x}(y)+(y) \frac{d}{d x}\left(x^{2}\right)$,
by the product rule
$=\left(x^{2}\right)\left(1 \frac{d y}{d x}\right)+y(2 x)$,
by using equation (1)

$$
=x^{2} \frac{d y}{d x}+2 x y
$$

Problem 3. Determine $\frac{d}{d x}\left(2 x^{3} y^{2}\right)$
In the product rule of differentiation let $u=2 x^{3}$ and $v=y^{2}$.

$$
\text { Thus } \begin{aligned}
\frac{d}{d x}\left(2 x^{3} y^{2}\right) & =\left(2 x^{3}\right) \frac{d}{d x}\left(y^{2}\right)+\left(y^{2}\right) \frac{d}{d x}\left(2 x^{3}\right) \\
& =\left(2 x^{3}\right)\left(2 y \frac{d y}{d x}\right)+\left(y^{2}\right)\left(6 x^{2}\right) \\
& =4 x^{3} y \frac{d y}{d x}+6 x^{2} y^{2} \\
& =\mathbf{2} \boldsymbol{x}^{2} \boldsymbol{y}\left(\mathbf{2} \boldsymbol{x} \frac{\mathbf{d} \boldsymbol{y}}{\mathbf{d} \boldsymbol{x}}+\mathbf{3 y}\right)
\end{aligned}
$$

Problem 4. Find $\frac{d}{d x}\left(\frac{3 y}{2 x}\right)$

In the quotient rule of differentiation let $u=3 y$ and $v=2 x$.

$$
\text { Thus } \begin{aligned}
\frac{d}{d x}\left(\frac{3 y}{2 x}\right) & =\frac{(2 x) \frac{d}{d x}(3 y)-(3 y) \frac{d}{d x}(2 x)}{(2 x)^{2}} \\
& =\frac{(2 x)\left(3 \frac{d y}{d x}\right)-(3 y)(2)}{4 x^{2}} \\
& =\frac{6 x \frac{d y}{d x}-6 y}{4 x^{2}}=\frac{\mathbf{3}}{\mathbf{2 x}}\left(x \frac{d y}{d x}-y\right)
\end{aligned}
$$

Problem 5. Differentiate $z=x^{2}+3 x \cos 3 y$ with respect to y.

$$
\begin{aligned}
\frac{d z}{d y} & =\frac{d}{d y}\left(x^{2}\right)+\frac{d}{d y}(3 x \cos 3 y) \\
& =2 x \frac{d x}{d y}+\left[(3 x)(-3 \sin 3 y)+(\cos 3 y)\left(3 \frac{d x}{d y}\right)\right] \\
& =\mathbf{2 x} \frac{\boldsymbol{d x}}{\boldsymbol{d y}}-\mathbf{9 x} \sin \mathbf{3 y} \boldsymbol{y} \mathbf{3} \cos \mathbf{3} \boldsymbol{y} \frac{\boldsymbol{d x}}{\boldsymbol{d y}}
\end{aligned}
$$

Exercise 20. Differentiating implicit functions involving products and quotients

1. Determine $\frac{d}{d x}\left(3 x^{2} y^{3}\right)$

$$
\left[3 x y^{2}\left(3 x \frac{d y}{d x}+2 y\right)\right]
$$

2. Find $\frac{d}{d x}\left(\frac{2 y}{5 x}\right) \quad\left[\frac{2}{5 x^{2}}\left(x \frac{d y}{d x}-y\right)\right]$
3. Determine $\frac{d}{d u}\left(\frac{3 u}{4 v}\right) \quad\left[\frac{3}{4 v^{2}}\left(v-u \frac{d v}{d u}\right)\right]$
4. Given $z=3 \sqrt{y} \cos 3 x$ find $\frac{d z}{d x}$

$$
\left[3\left(\frac{\cos 3 x}{2 \sqrt{y}}\right) \frac{d y}{d x}-9 \sqrt{y} \sin 3 x\right]
$$

5. Determine $\frac{d z}{d y}$ given $z=2 x^{3} \ln y$

$$
\left[2 x^{2}\left(\frac{x}{y}+3 \ln y \frac{d x}{d y}\right)\right]
$$

An implicit function such as $3 x^{2}+y^{2}-5 x+y=2$, may be differentiated term by term with respect to x. This gives:

$$
\begin{aligned}
& \quad \frac{d}{d x}\left(3 x^{2}\right)+\frac{d}{d x}\left(y^{2}\right)-\frac{d}{d x}(5 x)+\frac{d}{d x}(y)=\frac{d}{d x}(2) \\
& \text { i.e. } \quad 6 x+2 y \frac{d y}{d x}-5+1 \frac{d y}{d x}=0
\end{aligned}
$$

using equation (1) and standard derivatives.

An expression for the derivative $\frac{d y}{d x}$ in terms of x and y may be obtained by rearranging this latter equation. Thus:

$$
\begin{aligned}
(2 y+1) \frac{d y}{d x} & =5-6 x \\
\text { from which, } \frac{d \boldsymbol{y}}{d \boldsymbol{x}} & =\frac{\mathbf{5 - 6}}{\mathbf{2} \boldsymbol{y}+\mathbf{1}}
\end{aligned}
$$

Problem 6. Given $2 y^{2}-5 x^{4}-2-7 y^{3}=0$, determine $\frac{d y}{d x}$

Each term in turn is differentiated with respect to x :

Hence

$$
\begin{array}{r}
\frac{d}{d x}\left(2 y^{2}\right)-\frac{d}{d x}\left(5 x^{4}\right)-\frac{d}{d x}(2)-\frac{d}{d x}\left(7 y^{3}\right) \\
=\frac{d}{d x}(0)
\end{array}
$$

i.e.

$$
4 y \frac{d y}{d x}-20 x^{3}-0-21 y^{2} \frac{d y}{d x}=0
$$

Rearranging gives:

$$
\left(4 y-21 y^{2}\right) \frac{d y}{d x}=20 x^{3}
$$

i.e.

$$
\frac{d y}{d x}=\frac{20 x^{3}}{\left(4 y-21 y^{2}\right)}
$$

Problem 7. Determine the values of $\frac{d y}{d x}$ when $x=4$ given that $x^{2}+y^{2}=25$.

Differentiating each term in turn with respect to x gives:

$$
\begin{aligned}
\frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}\left(y^{2}\right) & =\frac{d}{d x}(25) \\
2 x+2 y \frac{d y}{d x} & =0 \\
\frac{d y}{d x} & =-\frac{2 x}{2 y}=-\frac{x}{y}
\end{aligned}
$$

Hence

Since $x^{2}+y^{2}=25$, when $x=4, y=\sqrt{\left(25-4^{2}\right)}= \pm 3$
Thus when $x=4$ and $y= \pm 3, \frac{d y}{d x}=-\frac{4}{ \pm 3}= \pm \frac{\mathbf{4}}{\mathbf{3}}$
$x^{2}+y^{2}=25$ is the equation of a circle, centre at the origin and radius 5, as shown in Fig. 22. At $x=4$, the two gradients are shown.
Above, $x^{2}+y^{2}=25$ was differentiated implicitly; actually, the equation could be transposed to

Figure 22
$y=\sqrt{\left(25-x^{2}\right)}$ and differentiated using the function of a function rule. This gives

$$
\frac{d y}{d x}=\frac{1}{2}\left(25-x^{2}\right)^{\frac{-1}{2}}(-2 x)=-\frac{x}{\sqrt{\left(25-x^{2}\right)}}
$$

and when $x=4, \frac{d y}{d x}=-\frac{4}{\sqrt{\left(25-4^{2}\right)}}= \pm \frac{4}{3}$ as obtained above.

Problem 8.

(a) Find $\frac{d y}{d x}$ in terms of x and y given

$$
4 x^{2}+2 x y^{3}-5 y^{2}=0
$$

(b) Evalate $\frac{d y}{d x}$ when $x=1$ and $y=2$
(a) Differentiating each term in turn with respect to x gives:

$$
\begin{array}{ll}
& \frac{d}{d x}\left(4 x^{2}\right)+\frac{d}{d x}\left(2 x y^{3}\right)-\frac{d}{d x}\left(5 y^{2}\right)=\frac{d}{d x}(0) \\
\text { i.e. } & 8 x+\left[(2 x)\left(3 y^{2} \frac{d y}{d x}\right)+\left(y^{3}\right)(2)\right]
\end{array}
$$

$$
-10 y \frac{d y}{d x}=0
$$

i.e. $\quad 8 x+6 x y^{2} \frac{d y}{d x}+2 y^{3}-10 y \frac{d y}{d x}=0$

Rearranging gives:

$$
\begin{aligned}
& 8 x+2 y^{3}=\left(10 y-6 x y^{2}\right) \frac{d y}{d x} \\
& \text { and } \frac{\boldsymbol{d} \boldsymbol{y}}{\boldsymbol{d} \boldsymbol{x}}=\frac{8 x+2 y^{3}}{10 y-6 x y^{2}}=\frac{\mathbf{4 x}+\boldsymbol{y}^{3}}{\boldsymbol{y}(\mathbf{5}-\mathbf{3} \boldsymbol{x} \boldsymbol{y})}
\end{aligned}
$$

(b) When $x=1$ and $y=2$,

$$
\frac{d y}{d x}=\frac{4(1)+(2)^{3}}{2[5-(3)(1)(2)]}=\frac{12}{-2}=-6
$$

Problem 9. Find the gradients of the tangents drawn to the circle $x^{2}+y^{2}-2 x-2 y=3$ at $x=2$.

The gradient of the tangent is given by $\frac{d y}{d x}$
Differentiating each term in turn with respect to x gives:

$$
\frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}\left(y^{2}\right)-\frac{d}{d x}(2 x)-\frac{d}{d x}(2 y)=\frac{d}{d x}(3)
$$

i.e.

$$
2 x+2 y \frac{d y}{d x}-2-2 \frac{d y}{d x}=0
$$

Hence

$$
(2 y-2) \frac{d y}{d x}=2-2 x
$$

from which

$$
\frac{d y}{d x}=\frac{2-2 x}{2 y-2}=\frac{1-x}{y-1}
$$

The value of y when $x=2$ is determined from the original equation

Hence $\quad(2)^{2}+y^{2}-2(2)-2 y=3$
i.e.

$$
\begin{array}{r}
4+y^{2}-4-2 y=3 \\
y^{2}-2 y-3=0
\end{array}
$$

Factorising gives: $(y+1)(y-3)=0$, from which $y=-1$ or $y=3$
When $x=2$ and $y=-1$,

$$
\frac{d y}{d x}=\frac{1-x}{y-1}=\frac{1-2}{-1-1}=\frac{-1}{-2}=\frac{1}{2}
$$

When $x=2$ and $y=3$,

$$
\frac{d y}{d x}=\frac{1-2}{3-1}=\frac{-1}{2}
$$

Hence the gradients of the tangents are $\pm 1 / 2$

Problem 10. Pressure p and volume v of a gas are related by the law $p v^{\gamma}=k$, where γ and k are constants. Show that the rate of change of pressure $\frac{d p}{d t}=-\gamma \frac{p}{v} \frac{d v}{d t}$

Since $p v^{\gamma}=k$, then $p=\frac{k}{v^{\gamma}}=k v^{-\gamma}$

$$
\frac{d p}{d t}=\frac{d p}{d v} \times \frac{d v}{d t}
$$

by the function of a function rule

$$
\begin{aligned}
\frac{d p}{d v} & =\frac{d}{d v}\left(k v^{-\gamma}\right) \\
& =-\gamma k v^{-\gamma-1}=\frac{-\gamma k}{v^{\gamma+1}} \\
\frac{d p}{d t} & =\frac{-\gamma k}{v^{\gamma+1}} \times \frac{d v}{d t}
\end{aligned}
$$

Since

$$
k=p v^{\gamma}
$$

$$
\frac{d p}{d t}=\frac{-\gamma\left(p v^{\gamma}\right)}{v^{r+1}} \frac{d v}{d t}=\frac{-\gamma p v^{\gamma}}{v^{\gamma} v^{1}} \frac{d v}{d t}
$$

i.e. $\quad \frac{d p}{d t}=-\gamma \frac{p}{v} \frac{d v}{d t}$

Exercise 21. Implicit differentiation

