Module 5 Implicit Functions

Implicit functions

and

When an equation can be written in the form y = f(x) it is said to be an **explicit function** of *x*. Examples of explicit functions include

$$y = 2x^3 - 3x + 4, \quad y = 2x \ln x$$
$$y = \frac{3e^x}{\cos x}$$

In these examples y may be differentiated with respect to x by using standard derivatives, the product rule and the quotient rule of differentiation respectively.

Sometimes with equations involving, say, y and x, it is impossible to make y the subject of the formula. The equation is then called an **implicit function** and examples of such functions include $y^3 + 2x^2 = y^2 - x$ and $\sin y = x^2 + 2xy$.

A. Differentiating implicit functions

It is possible to **differentiate an implicit function** by using the **function of a function rule**, which may be stated as

$$\frac{du}{dx} = \frac{du}{dy} \times \frac{dy}{dx}$$

Thus, to differentiate y^3 with respect to x, the substitution $u = y^3$ is made, from which, $\frac{du}{dy} = 3y^2$.

Hence, $\frac{d}{dx}(y^3) = (3y^2) \times \frac{dy}{dx}$, by the function of a function rule.

A simple rule for differentiating an implicit function is summarised as:

$$\frac{d}{dx}[f(y)] = \frac{d}{dy}[f(y)] \times \frac{dy}{dx}$$
(1)

Problem 1. Differentiate the following functions with respect to *x*:

(a) $2y^4$ (b) sin 3t

(a) Let $u = 2y^4$, then, by the function of a function rule:

$$\frac{du}{dx} = \frac{du}{dy} \times \frac{dy}{dx} = \frac{d}{dy}(2y^4) \times \frac{dy}{dx}$$
$$= 8y^3 \frac{dy}{dx}$$

(b) Let $u = \sin 3t$, then, by the function of a function rule:

$$\frac{du}{dx} = \frac{du}{dt} \times \frac{dt}{dx} = \frac{d}{dt}(\sin 3t) \times \frac{dt}{dx}$$
$$= 3\cos 3t\frac{dy}{dx}$$

Problem 2. Differentiate the following functions with respect to *x*:

(a)
$$4 \ln 5y$$
 (b) $\frac{1}{5}e^{3\theta - 2}$

(a) Let $u = 4 \ln 5y$, then, by the function of a function rule:

$$\frac{du}{dx} = \frac{du}{dy} \times \frac{dy}{dx} = \frac{d}{dy}(4\ln 5y) \times \frac{dy}{dx}$$
$$= \frac{4}{y}\frac{dy}{dx}$$

(b) Let $u = \frac{1}{5}e^{3\theta-2}$, then, by the function of a function rule:

$$\frac{du}{dx} = \frac{du}{d\theta} \times \frac{d\theta}{dx} = \frac{d}{d\theta} \left(\frac{1}{5}e^{3\theta - 2}\right) \times \frac{d\theta}{dx}$$
$$= \frac{3}{5}e^{3\theta - 2}\frac{d\theta}{dx}$$

Exercise 19. Differentiating implicit functions

B. Differentiating implicit functions containing products & quotients

The product and quotient rules of differentiation must be applied when differentiating functions containing products and quotients of two variables.

For example,
$$\frac{d}{dx}(x^2y) = (x^2)\frac{d}{dx}(y) + (y)\frac{d}{dx}(x^2)$$
,

by the product rule

$$= (x^2)\left(1\frac{dy}{dx}\right) + y(2x),$$

by using equation (1)

$$=x^2\frac{dy}{dx}+2xy$$

Problem 3. Determine $\frac{d}{dx}(2x^3y^2)$

In the product rule of differentiation let $u = 2x^3$ and $v = y^2$.

Thus
$$\frac{d}{dx}(2x^3y^2) = (2x^3)\frac{d}{dx}(y^2) + (y^2)\frac{d}{dx}(2x^3)$$

= $(2x^3)\left(2y\frac{dy}{dx}\right) + (y^2)(6x^2)$
= $4x^3y\frac{dy}{dx} + 6x^2y^2$
= $2x^2y\left(2x\frac{dy}{dx} + 3y\right)$

Problem 4. Find $\frac{d}{dx}\left(\frac{3y}{2x}\right)$

In the quotient rule of differentiation let u=3y and v=2x.

Thus
$$\frac{d}{dx}\left(\frac{3y}{2x}\right) = \frac{(2x)\frac{d}{dx}(3y) - (3y)\frac{d}{dx}(2x)}{(2x)^2}$$

$$= \frac{(2x)\left(3\frac{dy}{dx}\right) - (3y)(2)}{4x^2}$$
$$= \frac{6x\frac{dy}{dx} - 6y}{4x^2} = \frac{3}{2x^2}\left(x\frac{dy}{dx} - y\right)$$

Problem 5. respect to *y*. Differentiate $z = x^2 + 3x \cos 3y$ with

$$\frac{dz}{dy} = \frac{d}{dy}(x^2) + \frac{d}{dy}(3x\cos 3y)$$
$$= 2x\frac{dx}{dy} + \left[(3x)(-3\sin 3y) + (\cos 3y)\left(3\frac{dx}{dy}\right)\right]$$
$$= 2x\frac{dx}{dy} - 9x\sin 3y + 3\cos 3y\frac{dx}{dy}$$

Exercise 20. Differentiating implicit functions involving products and quotients

1. Determine
$$\frac{d}{dx}(3x^2y^3)$$

$$\begin{bmatrix} 3xy^2\left(3x\frac{dy}{dx}+2y\right) \end{bmatrix}$$
2. Find $\frac{d}{dx}\left(\frac{2y}{5x}\right)$

$$\begin{bmatrix} \frac{2}{5x^2}\left(x\frac{dy}{dx}-y\right) \end{bmatrix}$$
3. Determine $\frac{d}{du}\left(\frac{3u}{4v}\right)$

$$\begin{bmatrix} \frac{3}{4v^2}\left(v-u\frac{dv}{du}\right) \end{bmatrix}$$
4. Given $z=3$, $(v\cos 3x)$ find $\frac{dz}{dz}$

4. Given
$$z = 3\sqrt{y}\cos 3x$$
 find $\frac{dx}{dx}$

$$\left[3\left(\frac{\cos 3x}{2\sqrt{y}}\right)\frac{dy}{dx} - 9\sqrt{y}\sin 3x\right]$$
5. Determine $\frac{dz}{dy}$ given $z = 2x^3 \ln y$

$$\left[2x^2\left(\frac{x}{dx} + 3\ln y\frac{dx}{dx}\right)\right]$$

 $\int \frac{dy}{dy}$ L y

An implicit function such as $3x^2 + y^2 - 5x + y = 2$, may be differentiated term by term with respect to x. This gives:

$$\frac{d}{dx}(3x^2) + \frac{d}{dx}(y^2) - \frac{d}{dx}(5x) + \frac{d}{dx}(y) = \frac{d}{dx}(2)$$

$$6x + 2y\frac{dy}{dx} - 5 + 1\frac{dy}{dx} = 0,$$

i.e.

using equation (1) and standard derivatives.

An expression for the derivative $\frac{dy}{dx}$ in terms of x and y may be obtained by rearranging this latter equation. Thus:

$$(2y+1)\frac{dy}{dx} = 5 - 6x$$

from which, $\frac{dy}{dx} = \frac{5 - 6x}{2y + 1}$

Problem 6. Given $2y^2 - 5x^4 - 2 - 7y^3 = 0$, determine $\frac{dy}{dx}$

Each term in turn is differentiated with respect to *x*:

Hence
$$\frac{d}{dx}(2y^2) - \frac{d}{dx}(5x^4) - \frac{d}{dx}(2) - \frac{d}{dx}(7y^3)$$

= $\frac{d}{dx}(0)$

i.e.
$$4y\frac{dy}{dx} - 20x^3 - 0 - 21y^2\frac{dy}{dx} = 0$$

Rearranging gives:

$$(4y - 21y^{2})\frac{dy}{dx} = 20x^{3}$$

i.e.
$$\frac{dy}{dx} = \frac{20x^{3}}{(4y - 21y^{2})}$$

Problem 7. Determine the values of $\frac{dy}{dx}$ when x = 4 given that $x^2 + y^2 = 25$.

Differentiating each term in turn with respect to x gives:

$$\frac{d}{dx}(x^2) + \frac{d}{dx}(y^2) = \frac{d}{dx}(25)$$
$$2x + 2y\frac{dy}{dx} = 0$$
ace
$$\frac{dy}{dx} = -\frac{2x}{2y} = -\frac{x}{y}$$

Hence

i.e.

Since
$$x^2 + y^2 = 25$$
, when $x = 4$, $y = \sqrt{(25 - 4^2)} = \pm 3$
Thus when $x = 4$ and $y = \pm 3$, $\frac{dy}{dx} = -\frac{4}{\pm 3} = \pm \frac{4}{3}$

 $x^2 + y^2 = 25$ is the equation of a circle, centre at the origin and radius 5, as shown in Fig. 22. At x = 4, the two gradients are shown.

Above, $x^2 + y^2 = 25$ was differentiated implicitly; actually, the equation could be transposed to

Figure 22

 $y = \sqrt{(25 - x^2)}$ and differentiated using the function of a function rule. This gives

$$\frac{dy}{dx} = \frac{1}{2}(25 - x^2)^{\frac{-1}{2}}(-2x) = -\frac{x}{\sqrt{(25 - x^2)}}$$

and when x = 4, $\frac{dy}{dx} = -\frac{4}{\sqrt{(25-4^2)}} = \pm \frac{4}{3}$ as obtained above.

Problem 8. (a) Find $\frac{dy}{dx}$ in terms of x and y given $4x^2 + 2xy^3 - 5y^2 = 0$

(b) Evaluate
$$\frac{dy}{dx}$$
 when $x = 1$ and $y = 2$

(a) Differentiating each term in turn with respect to xgives:

$$\frac{d}{dx}(4x^{2}) + \frac{d}{dx}(2xy^{3}) - \frac{d}{dx}(5y^{2}) = \frac{d}{dx}(0)$$

i.e. $8x + \left[(2x)\left(3y^{2}\frac{dy}{dx}\right) + (y^{3})(2) \right] - 10y\frac{dy}{dx} = 0$
i.e. $8x + 6xy^{2}\frac{dy}{dx} + 2y^{3} - 10y\frac{dy}{dx} = 0$

Rearranging gives:

$$8x + 2y^{3} = (10y - 6xy^{2})\frac{dy}{dx}$$

and
$$\frac{dy}{dx} = \frac{8x + 2y^{3}}{10y - 6xy^{2}} = \frac{4x + y^{3}}{y(5 - 3xy)}$$

(b) When x = 1 and y = 2,

$$\frac{d\mathbf{y}}{d\mathbf{x}} = \frac{4(1) + (2)^3}{2[5 - (3)(1)(2)]} = \frac{12}{-2} = -\mathbf{6}$$

Problem 9. Find the gradients of the tangents drawn to the circle $x^2 + y^2 - 2x - 2y = 3$ at x = 2.

The gradient of the tangent is given by $\frac{dy}{dx}$ Differentiating each term in turn with respect to x gives:

$$\frac{d}{dx}(x^{2}) + \frac{d}{dx}(y^{2}) - \frac{d}{dx}(2x) - \frac{d}{dx}(2y) = \frac{d}{dx}(3)$$
$$2x + 2y\frac{dy}{dx} - 2 - 2\frac{dy}{dx} = 0$$

 $(2y-2)\frac{dy}{dx} = 2 - 2x,$ Hence

i.e.

from which

$$\frac{dy}{dx} = \frac{2 - 2x}{2y - 2} = \frac{1 - x}{y - 1}$$

The value of y when x=2 is determined from the original equation

Hence
$$(2)^2 + y^2 - 2(2) - 2y = 3$$

i.e. $4 + y^2 - 4 - 2y = 3$
or $y^2 - 2y - 3 = 0$

Factorising gives: (y+1)(y-3)=0, from which y=-1 or y=3When x=2 and y=-1

$$dy = 1$$
, $dy = 1$,

$$\frac{dy}{dx} = \frac{1-x}{y-1} = \frac{1-2}{-1-1} = \frac{-1}{-2} = \frac{1}{2}$$

When x = 2 and y = 3,

$$\frac{dy}{dx} = \frac{1-2}{3-1} = \frac{-1}{2}$$

Hence the gradients of the tangents are $\pm 1/2$

Problem 10. Pressure *p* and volume *v* of a gas are related by the law $pv^{\gamma} = k$, where $r \in \gamma$ and k are constants. Show that the rate of change of pressure $\frac{dp}{dt} = -\gamma \frac{p}{v} \frac{dv}{dt}$

Since $pv^{\gamma} = k$, then $p = \frac{k}{v^{\gamma}} = kv^{-\gamma}$ $dp \quad dp \quad dv$

$$\frac{dT}{dt} = \frac{dT}{dv} \times \frac{dT}{dt}$$

by the function of a function rule

 $k = pv^{\gamma}$

$$\begin{split} \frac{dp}{dv} &= \frac{d}{dv} (kv^{-\gamma}) \\ &= -\gamma kv^{-\gamma-1} = \frac{-\gamma k}{v^{\gamma+1}} \\ \frac{dp}{dt} &= \frac{-\gamma k}{v^{\gamma+1}} \times \frac{dv}{dt} \end{split}$$

$$\frac{dp}{dt} = \frac{-\gamma(pv^{\gamma})}{v^{r+1}}\frac{dv}{dt} = \frac{-\gamma pv^{\gamma}}{v^{\gamma}v^{1}}\frac{dv}{dt}$$

i.e.

$$\frac{dp}{dt} = -\gamma \frac{p}{v} \frac{dv}{dt}$$

Exercise 21. Implicit differentiation