# Module 4 **Parametric Equations**

### **Parametric Equations**

Certain mathematical functions can be expressed more simply by expressing, say, x and y separately in terms of a third variable. For example,  $y = r \sin \theta$ ,  $x = r \cos \theta$ . Then, any value given to  $\theta$  will produce a pair of values for x and y, which may be plotted to provide a curve of

The third variable,  $\theta$ , is called a **parameter** and the two expressions for y and x are called **parametric** 

The above example of  $y=r\sin\theta$  and  $x=r\cos\theta$  are the parametric equations for a circle. The equation of any point on a circle, centre at the origin and of radius r is given by:  $x^2 + y^2 = r^2$ To show that  $y = r \sin \theta$  and  $= \cos \theta$  are suitable

parametric equations for such a circle:

Left hand side of equation

$$= x^{2} + y^{2}$$

$$= (r \cos \theta)^{2} + (r \sin \theta)^{2}$$

$$= r^{2} \cos^{2} \theta + r^{2} \sin^{2} \theta$$

$$= r^{2} (\cos^{2} \theta + \sin^{2} \theta)$$

$$= r^{2} = \text{right hand side}$$
(since  $\cos^{2} \theta + \sin^{2} \theta = 1$ )

## A. Common parametric equations

The following are some of the most common parametric equations, and Fig. 21 shows typical shapes of these curves.



Figure 21

- $x = a \cos \theta, y = b \sin \theta$ (a) Ellipse (b) Parabola  $x = at^2$ , y = 2at(c) Hyperbola  $x = a \sec \theta, y = b \tan \theta$ (d) Rectangular  $x = ct, y = \frac{c}{t}$
- hyperbola

(e) Cardioid 
$$x = a(2 \cos \theta - \cos 2\theta)$$
,  
 $y = a(2 \sin \theta - \sin 2\theta)$ 

(f) Astroid 
$$x = a\cos^3\theta$$
,  $y = a\sin^3\theta$ 

(g) Cycloid 
$$x = a(\theta - \sin \theta), y = a(1 - \cos \theta)$$

### B. Differentiation in parameters

When x and y are given in terms of a parameter say  $\theta$ , then by the function of a function rule of differentiation

$$\frac{dy}{dx} = \frac{dy}{d\theta} \times \frac{d\theta}{dx}$$

It may be shown that this can be written as:

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{d\theta}{dx}} \tag{1}$$

For the second differential,

$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left( \frac{dy}{dx} \right) = \frac{d}{d\theta} \left( \frac{dy}{dx} \right) \cdot \frac{d\theta}{dx}$$

or

$$\frac{d^2y}{dx^2} = \frac{\frac{d}{d\theta} \left(\frac{dy}{dx}\right)}{\frac{dx}{d\theta}}$$
(2)

**Problem 1.** Given  $x = 5\theta - 1$  and  $y = 2\theta(\theta - 1)$ , determine  $\frac{dy}{dx}$  in terms of  $\theta$ 

$$x = 5\theta - 1$$
, hence  $\frac{dy}{d\theta} = 5$   
 $y = 2\theta(\theta - 1) = 2\theta^2 - 2\theta$ ,

hence 
$$\frac{dy}{d\theta} = 4\theta - 2 = 2(2\theta - 1)$$

From equation (1),

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{2(2\theta - 1)}{5} \text{ or } \frac{2}{5}(2\theta - 1)$$

**Problem 2.** The parametric equations of a function are given by  $y=3\cos 2t$ ,  $x=2\sin t$ .

Determine expressions for (a) 
$$\frac{dy}{dx}$$
 (b)  $\frac{d^2y}{dx^2}$ 

(a) 
$$y=3\cos 2t$$
, hence  $\frac{dy}{dt} = -6\sin 2t$   
 $x=2\sin t$ , hence  $\frac{dx}{dt} = 2\cos t$ 

From equation (1),

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{-6\sin 2t}{2\cos t} = \frac{-6(2\sin t\cos t)}{2\cos t}$$

(Review double angles)

i.e. 
$$\frac{dy}{dx} = -6\sin t$$

(b) From equation (2),

$$\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}} = \frac{\frac{d}{dt}(-6\sin t)}{2\cos t} = \frac{-6\cos t}{2\cos t}$$

i.e. 
$$\frac{d^2y}{dx^2} = -3$$

**Problem 3.** The equation of a tangent drawn to a curve at point  $(x_1, y_1)$  is given by:

$$y - y_1 = \frac{dy_1}{dx_1}(x - x_1)$$

Determine the equation of the tangent drawn to the parabola  $x = 2t^2$ , y = 4t at the point t.

At point 
$$t$$
,  $x_1 = 2t^2$ , hence  $\frac{dx_1}{dt} = 4t$   
and  $y_1 = 4t$ , hence  $\frac{dy_1}{dt} = 4$ 

From equation (1),

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{4}{4t} = \frac{1}{t}$$

Hence, the equation of the tangent is:

$$y - 4t = \frac{1}{t}(x - 2t^2)$$

**Problem 4.** The parametric equations of a cycloid are  $x = 4(\theta - \sin \theta)$ ,  $y = 4(1 - \cos \theta)$ .

Determine (a) 
$$\frac{dy}{dx}$$
 (b)  $\frac{d^2y}{dx^2}$ 

(a) 
$$x = 4(\theta - \sin \theta)$$
  
hence  $\frac{dx}{d\theta} = 4 - 4\cos \theta = 4(1 - \cos \theta)$   
 $y = 4(1 - \cos \theta)$ , hence  $\frac{dy}{d\theta} = 4\sin \theta$ 

From equation (1),

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{4\sin\theta}{4(1-\cos\theta)} = \frac{\sin\theta}{(1-\cos\theta)}$$

(b) From equation (2),

$$\frac{d^2y}{dx^2} = \frac{\frac{d}{d\theta} \left(\frac{dy}{dx}\right)}{\frac{dx}{d\theta}} = \frac{\frac{d}{d\theta} \left(\frac{\sin\theta}{1-\cos\theta}\right)}{4(1-\cos\theta)}$$

$$= \frac{\frac{(1-\cos\theta)(\cos\theta) - (\sin\theta)(\sin\theta)}{(1-\cos\theta)^2}}{4(1-\cos\theta)}$$

$$= \frac{\cos\theta - \cos^2\theta - \sin^2\theta}{4(1-\cos\theta)^3}$$

$$= \frac{\cos\theta - (\cos^2\theta + \sin^2\theta)}{4(1-\cos\theta)^3}$$

$$= \frac{\cos\theta - 1}{4(1-\cos\theta)^3}$$

$$= \frac{-(1-\cos\theta)}{4(1-\cos\theta)^3} = \frac{-1}{4(1-\cos\theta)^2}$$

#### **Exercise 17. Parametric Equations**

#### **Solved Problems:**

**Problem 5.** The equation of the normal drawn to a curve at point  $(x_1, y_1)$  is given by:

$$y - y_1 = -\frac{1}{\frac{dy_1}{dx_1}}(x - x_1)$$

Determine the equation of the normal drawn to the astroid  $x = 2 \cos^3 \theta$ ,  $y = 2 \sin^3 \theta$  at the point  $\theta = \frac{\pi}{4}$ 

$$x = 2\cos^3\theta$$
, hence  $\frac{dx}{d\theta} = -6\cos^2\theta\sin\theta$ 

$$y = 2\sin^3\theta$$
, hence  $\frac{dy}{d\theta} = 6\sin^2\theta\cos\theta$ 

From equation (1),

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{6\sin^2\theta\cos\theta}{-6\cos^2\theta\sin\theta} = -\frac{\sin\theta}{\cos\theta} = -\tan\theta$$

When 
$$\theta = \frac{\pi}{4}$$
,  $\frac{dy}{dx} = -\tan\frac{\pi}{4} = -1$ 

$$x_1 = 2\cos^3\frac{\pi}{4} = 0.7071$$
 and  $y_1 = 2\sin^3\frac{\pi}{4} = 0.7071$ 

Hence, the equation of the normal is:

$$y - 0.7071 = -\frac{1}{-1}(x - 0.7071)$$

i.e. 
$$y - 0.7071 = x - 0.7071$$

i.e. 
$$y = x$$

**Problem 6.** The parametric equations for a hyperbola are  $x = 2 \sec \theta$ ,  $y = 4 \tan \theta$ . Evaluate (a)  $\frac{dy}{dx}$  (b)  $\frac{d^2y}{dx^2}$ , correct to 4 significant figures, when  $\theta = 1$  radian

(a) 
$$x = 2 \sec \theta$$
, hence  $\frac{dx}{d\theta} = 2 \sec \theta \tan \theta$   
 $y = 4 \tan \theta$ , hence  $\frac{dy}{d\theta} = 4 \sec^2 \theta$ 

From equation (1),

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{4\sec^2\theta}{2\sec\theta\tan\theta} = \frac{2\sec\theta}{\tan\theta}$$
$$= \frac{2\left(\frac{1}{\cos\theta}\right)}{\left(\frac{\sin\theta}{\cos\theta}\right)} = \frac{2}{\sin\theta} \text{ or } 2\csc\theta$$

When  $\theta = 1$  rad,  $\frac{dy}{dx} = \frac{2}{\sin 1} = 2.377$ , correct to 4 significant figures.

(b) From equation (2),

$$\frac{d^2y}{dx^2} = \frac{\frac{d}{d\theta} \left(\frac{dy}{dx}\right)}{\frac{dx}{d\theta}} = \frac{\frac{d}{d\theta} (2 \csc \theta)}{2 \sec \theta \tan \theta}$$

$$= \frac{-2 \csc \theta \cot \theta}{2 \sec \theta \tan \theta}$$

$$= \frac{-\left(\frac{1}{\sin \theta}\right) \left(\frac{\cos \theta}{\sin \theta}\right)}{\left(\frac{1}{\cos \theta}\right) \left(\frac{\sin \theta}{\cos \theta}\right)}$$

$$= -\left(\frac{\cos \theta}{\sin^2 \theta}\right) \left(\frac{\cos^2 \theta}{\sin \theta}\right)$$

$$= -\frac{\cos^3 \theta}{\sin^3 \theta} = -\cot^3 \theta$$

When 
$$\theta = 1$$
 rad,  $\frac{d^2y}{dx^2} = -\cot^3 1 = -\frac{1}{(\tan 1)^3} =$   
-0.2647, correct to 4 significant figures.

**Problem 7.** When determining the surface tension of a liquid, the radius of curvature,  $\rho$ , of part of the surface is given by:

$$\rho = \frac{\sqrt{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^3}}{\frac{d^2y}{dx^2}}$$

Find the radius of curvature of the part of the surface having the parametric equations  $x = 3t^2$ , y = 6t at the point t = 2

$$x = 3t^2$$
, hence  $\frac{dx}{dt} = 6t$   
 $y = 6t$ , hence  $\frac{dy}{dt} = 6$ 

From equation (1), 
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{6}{6t} = \frac{1}{t}$$

From equation (2),

$$\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}} = \frac{\frac{d}{dt}\left(\frac{1}{t}\right)}{6t} = \frac{-\frac{1}{t^2}}{6t} = -\frac{1}{6t^3}$$

Hence, radius of curvature, 
$$\rho = \frac{\sqrt{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^3}}{\frac{d^2y}{dx^2}}$$

$$= \frac{\sqrt{\left[1 + \left(\frac{1}{t}\right)^2\right]^3}}{-\frac{1}{6t^3}}$$
When  $t = 2$ ,  $\rho = \frac{\sqrt{\left[1 + \left(\frac{1}{2}\right)^2\right]^3}}{-\frac{1}{6(2)^3}} = \frac{\sqrt{(1.25)^3}}{-\frac{1}{48}}$ 

$$= -48\sqrt{(1.25)^3} = -67.08.$$

# **Exercise** 18. Differentiation of Parametric Equations