Module 3 - Parametric Equations

A. Introduction to parametric equations

Certain mathematical functions can be expressed more simply by expressing, say, x and y separately in terms of a third variable. For example, $y = r \sin \theta$, $x = r \cos \theta$. Then, any value given to θ will produce a pair of values for x and y, which may be plotted to provide a curve of y = f(x).

The third variable, θ , is called a **parameter** and the two expressions for y and x are called **parametric** equations.

The above example of $y = r \sin \theta$ and $x = r \cos \theta$ are the parametric equations for a circle. The equation of any point on a circle, centre at the origin and of radius *r* is given by: $x^2 + y^2 = r^2$.

To show that $y = r \sin \theta$ and $x = r \cos \theta$ are suitable parametric equations for such a circle:

Left hand side of equation

$$= x^{2} + y^{2}$$

$$= (r \cos \theta)^{2} + (r \sin \theta)^{2}$$

$$= r^{2} \cos^{2} \theta + r^{2} \sin^{2} \theta$$

$$= r^{2} (\cos^{2} \theta + \sin^{2} \theta)$$

$$= r^{2} = \text{right hand side}$$
(since $\cos^{2} \theta + \sin^{2} \theta = 1$)

B. Common Parametric Equations

The following are some of the most common param-etric equations, and Figure 18 shows typical shapes of these curves.

- (a) Ellipse $x = a \cos \theta, y = b \sin \theta$
- (b) Parabola $x = a t^2, y = 2a t$
- (c) Hyperbola $x = a \sec \theta, y = b \tan \theta$
- (d) Rectangular x = c t, $y = \frac{c}{t}$ hyperbola

- (e) Cardioid $x = a (2 \cos \theta \cos 2\theta),$ $y = a (2 \sin \theta - \sin 2\theta)$
- (f) Astroid $x = a \cos^3 \theta$, $y = a \sin^3 \theta$
- (g) Cycloid $x = a(\theta \sin \theta), y = a(1 \cos \theta)$

Figure 18

C. Differentiation in Parameters

When x and y are given in terms of a parameter, say θ , then by the function of a function rule of

differentiation.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}\theta} \times \frac{\mathrm{d}\theta}{\mathrm{d}x}$$

It may be shown that this can be written as:

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$$
(1)

For the second differential,

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) \cdot \frac{\mathrm{d}\theta}{\mathrm{d}x}$$

or

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\frac{\mathrm{d}}{\mathrm{d}\theta} \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)}{\frac{\mathrm{d}x}{\mathrm{d}\theta}} \tag{2}$$

Problem 1. Given
$$x = 5\theta - 1$$
 and
 $y = 2\theta (\theta - 1)$, determine $\frac{dy}{dx}$ in terms of θ

$$x = 5\theta - 1, \text{ hence } \frac{dy}{d\theta} = 5$$
$$y = 2\theta(\theta - 1) = 2\theta^2 - 2\theta,$$
$$\text{hence } \frac{dy}{d\theta} = 4\theta - 2 = 2(2\theta - 1)$$

From equation (1),

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}\theta}}{\frac{\mathrm{d}x}{\mathrm{d}\theta}} = \frac{2(2\theta - 1)}{5} \text{ or } \frac{2}{5}(2\theta - 1)$$

Problem 2. The parametric equations of a function are given by $y = 3\cos 2t$, $x = 2\sin t$. Determine expressions for (a) $\frac{dy}{dx}$ (b) $\frac{d^2y}{dx^2}$

(a)
$$y = 3\cos 2t$$
, hence $\frac{dy}{dt} = -6\sin 2t$

$$x = 2 \sin t$$
, hence $\frac{\mathrm{d}x}{\mathrm{d}t} = 2 \cos t$

From equation (1),

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{-6\sin 2t}{2\cos t} = \frac{-6(2\sin t\cos t)}{2\cos t}$$

from double angles.

i.e.
$$\frac{\mathrm{d}y}{\mathrm{d}x} = -6\sin t$$

(b) From equation (2),

$$\frac{d^2 y}{dx^2} = \frac{\frac{d}{dt} \left(\frac{dy}{dx}\right)}{\frac{dx}{dt}} = \frac{\frac{d}{dt} \left(-6\sin t\right)}{2\cos t} = \frac{-6\cos t}{2\cos t}$$

i.e.
$$\frac{d^2 y}{dx^2} = -3$$

Problem 3. The equation of a tangent drawn to a curve at point (x_1, y_1) is given by:

$$y - y_1 = \frac{dy_1}{dx_1}(x - x_1)$$

Determine the equation of the tangent drawn to the parabola $x = 2t^2$, y = 4t at the point t.

At point t,
$$x_1 = 2t^2$$
, hence $\frac{dx_1}{dt} = 4t$
and $y_1 = 4t$, hence $\frac{dy_1}{dt} = 4$

From equation (1),

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{4}{4t} = \frac{1}{t}$$

Hence, the equation of the tangent is: $y - 4t = \frac{1}{t} (x - 2t^2)$

Problem 4. The parametric equations of a cycloid are $x = 4(\theta - \sin \theta)$, $y = 4(1 - \cos \theta)$. Determine (a) $\frac{dy}{dx}$ (b) $\frac{d^2y}{dx^2}$ (a) $x = 4(\theta - \sin \theta)$, hence $\frac{dx}{d\theta} = 4 - 4\cos\theta = 4(1 - \cos\theta)$ $y = 4(1 - \cos\theta)$, hence $\frac{dy}{d\theta} = 4\sin\theta$ From equation (1),

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}\theta}}{\frac{\mathrm{d}x}{\mathrm{d}\theta}} = \frac{4\sin\theta}{4(1-\cos\theta)} = \frac{\sin\theta}{(1-\cos\theta)}$$

(b) From equation (2),

$$\frac{d^2 y}{dx^2} = \frac{\frac{d}{d\theta} \left(\frac{dy}{dx}\right)}{\frac{dx}{d\theta}} = \frac{\frac{d}{d\theta} \left(\frac{\sin\theta}{1-\cos\theta}\right)}{4(1-\cos\theta)}$$
$$= \frac{\frac{(1-\cos\theta)(\cos\theta)-(\sin\theta)(\sin\theta)}{(1-\cos\theta)^2}}{4(1-\cos\theta)^2}$$
$$= \frac{\cos\theta-\cos^2\theta-\sin^2\theta}{4(1-\cos\theta)^3}$$
$$= \frac{\cos\theta-(\cos^2\theta+\sin^2\theta)}{4(1-\cos\theta)^3}$$
$$= \frac{\cos\theta-1}{4(1-\cos\theta)^3}$$
$$= \frac{-(1-\cos\theta)}{4(1-\cos\theta)^3} = \frac{-1}{4(1-\cos\theta)^2}$$

Exercise 12. Differentiation of parametric equations

Solved problems on differentiation of parametric equations

Problem 5. The equation of the normal drawn to a curve at point (x_1, y_1) is given by:

$$y - y_1 = -\frac{1}{\frac{dy_1}{dx_1}}(x - x_1)$$

Determine the equation of the normal drawn to the astroid $x = 2\cos^3 \theta$, $y = 2\sin^3 \theta$ at the point $\theta = \frac{\pi}{4}$

$$x = 2\cos^3\theta$$
, hence $\frac{dx}{d\theta} = -6\cos^2\theta \sin\theta$
 $y = 2\sin^3\theta$, hence $\frac{dy}{d\theta} = 6\sin^2\theta \cos\theta$

From equation (1),

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{6\sin^2\theta\cos\theta}{-6\cos^2\theta\sin\theta} = -\frac{\sin\theta}{\cos\theta} = -\tan\theta$$

When $\theta = \frac{\pi}{4}$, $\frac{dy}{dx} = -\tan\frac{\pi}{4} = -1$ $x_1 = 2\cos^3\frac{\pi}{4} = 0.7071$ and $y_1 = 2\sin^3\frac{\pi}{4} = 0.7071$

Hence, the equation of the normal is:

$$y - 0.7071 = -\frac{1}{-1}(x - 0.7071)$$

i.e.
$$y - 0.7071 = x - 0.7071$$

i.e.
$$y = x$$

Problem 6. The parametric equations for a hyperbola are $x = 2 \sec \theta$, $y = 4 \tan \theta$. Evaluate (a) $\frac{dy}{dx}$ (b) $\frac{d^2y}{dx^2}$, correct to 4 significant figures, when $\theta = 1$ radian.

(a)
$$x = 2 \sec \theta$$
, hence $\frac{dx}{d\theta} = 2 \sec \theta \tan \theta$
 $y = 4 \tan \theta$, hence $\frac{dy}{d\theta} = 4 \sec^2 \theta$

From equation (1),

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{4\sec^2\theta}{2\sec\theta\tan\theta} = \frac{2\sec\theta}{\tan\theta}$$
$$= \frac{2\left(\frac{1}{\cos\theta}\right)}{\left(\frac{\sin\theta}{\cos\theta}\right)} = \frac{2}{\sin\theta} \text{ or } 2\csc\theta$$

When $\theta = 1$ rad, $\frac{dy}{dx} = \frac{2}{\sin 1} = 2.377$, correct to 4 significant figures.

(b) From equation (2),

$$\frac{d^2 y}{dx^2} = \frac{\frac{d}{d\theta} \left(\frac{dy}{dx}\right)}{\frac{dx}{d\theta}} = \frac{\frac{d}{d\theta} (2 \csc \theta)}{2 \sec \theta \tan \theta}$$
$$= \frac{-2 \csc \theta \cot \theta}{2 \sec \theta \tan \theta}$$
$$= \frac{-\left(\frac{1}{\sin \theta}\right) \left(\frac{\cos \theta}{\sin \theta}\right)}{\left(\frac{1}{\cos \theta}\right) \left(\frac{\sin \theta}{\cos \theta}\right)}$$
$$= -\left(\frac{\cos \theta}{\sin^2 \theta}\right) \left(\frac{\cos^2 \theta}{\sin \theta}\right)$$
$$= -\frac{\cos^3 \theta}{\sin^3 \theta} = -\cot^3 \theta$$
When $\theta = 1$ rad, $\frac{d^2 y}{dx^2} = -\cot^3 1 = -\frac{1}{(\tan 1)^3}$

= -0.2647, correct to 4 significant figures.

Problem 7. When determining the surface tension of a liquid, the radius of curvature, ρ , of part of the surface is given by:

$$\rho = \frac{\sqrt{\left[1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2\right]^3}}{\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}}$$

Find the radius of curvature of the part of the surface having the parametric equations $x = 3t^2$, y = 6t at the point t = 2.

$$x = 3t^2$$
, hence $\frac{dx}{dt} = 6t$
 $y = 6t$, hence $\frac{dy}{dt} = 6$

From equation (1), $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{6}{6t} = \frac{1}{t}$

From equation (2),

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{t}\right)}{6t} = \frac{-\frac{1}{t^2}}{6t} = -\frac{1}{6t^3}$$

Exercise 13. Differentiation of parametric equations