Module 2

Methods of Differentiation

A. Differentiation of common functions

The standard derivatives are true for all real values of x.

\boldsymbol{y} or $\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{d y}$ $\boldsymbol{d x}$ of $\boldsymbol{f}^{\prime}(\boldsymbol{x})$
$a x^{n}$	$a x^{n-1}$
$\sin a x$	$a \cos a x$
$\cos a x$	$-a \sin a x$
$e^{a x}$	$a e^{a x}$
$\ln a x$	$\frac{1}{x}$

The differential coefficient of a sum or difference is the sum or difference of the differential coefficients of the separate terms.
Thus, if $f(x)=p(x)+q(x)-r(x)$, (where f, p, q and r are functions), then $f^{\prime}(x)=p^{\prime}(x)+q^{\prime}(x)-r^{\prime}(x)$

Problem 1. Find the differential coefficients of:
(a) $y=12 x^{3}$
(b) $y=\frac{12}{x^{3}}$

If $y=a x^{n}$ then $\frac{d y}{d x}=a n x^{n-1}$
(a) Since $y=12 x^{3}, \quad a=12$ and $n=3$ thus $\frac{d y}{d x}=(12)(3) x^{3-1}=\mathbf{3 6} \boldsymbol{x}^{\mathbf{2}}$
(b) $y=\frac{12}{x^{3}}$ is rewritten in the standard $a x^{n}$ form as $y=12 x^{-3}$ and in the general rule $a=12$ and $n=-3$

$$
\text { Thus } \begin{aligned}
\frac{d y}{d x} & =(12)(-3) x^{-3-1} \\
& =-36 x^{-4}=-\frac{\mathbf{3 6}}{x^{4}}
\end{aligned}
$$

Problem 2. Differentiate: (a) $y=6$ (b) $y=6 x$
(a) $y=6$ may be written as $y=6 x^{0}$, i.e. in the general rule $a=6$ and $n=0$.
Hence $\frac{d y}{d x}=(6)(0) x^{0-1}=\mathbf{0}$
In general, the differential coefficient of a constant is always zero.
(b) Since $y=6 x$, in the general rule $a=6$ and $n=1$

Hence $\frac{d y}{d x}=(6)(1) x^{1-1}=6 x^{0}=\mathbf{6}$
In general, the differential coefficient of $k x$, where k is a constant, is always k.

Problem 3. Find the derivatives of:
(a) $y=3 \sqrt{x}$
(b) $y=\frac{5}{\sqrt[3]{x^{4}}}$
(a) $y=3 \sqrt{x}$ is rewritten in the standard differential form as $y=3 x^{1 / 2}$
In the general rule, $a=3$ and $n=\frac{1}{2}$
Thus $\frac{d y}{d x}=(3)\left(\frac{1}{2}\right) x^{\frac{1}{2}-1}=\frac{3}{2} x^{-\frac{1}{2}}$

$$
=\frac{3}{2 x^{1 / 2}}=\frac{3}{2 \sqrt{x}}
$$

(b) $y=\frac{5}{\sqrt[3]{x^{4}}}=\frac{5}{x^{4 / 3}}=5 x^{-4 / 3}$

In the general rule, $a=5$ and $n=-\frac{4}{3}$
Thus $\frac{d y}{d x}=(5)\left(-\frac{4}{3}\right) x^{(-4 / 3)-1}$

$$
=\frac{-20}{3} x^{-7 / 3}=\frac{-20}{3 x^{7 / 3}}=\frac{\mathbf{- 2 0}}{\mathbf{3} \sqrt[3]{\boldsymbol{x}^{7}}}
$$

Problem 4. Differentiate:
$y=5 x^{4}+4 x-\frac{1}{2 x^{2}}+\frac{1}{\sqrt{x}}-3$ with respect to x
$y=5 x^{4}+4 x-\frac{1}{2 x^{2}}+\frac{1}{\sqrt{x}}-3$ is rewritten as
$y=5 x^{4}+4 x-\frac{1}{2} x^{-2}+x^{-1 / 2}-3$
When differentiating a sum, each term is differentiated in turn.

Thus $\frac{d y}{d x}=(5)(4) x^{4-1}+(4)(1) x^{1-1}-\frac{1}{2}(-2) x^{-2-1}$

$$
+(1)\left(-\frac{1}{2}\right) x^{(-1 / 2)-1}-0
$$

$$
=20 x^{3}+4+x^{-3}-\frac{1}{2} x^{-3 / 2}
$$

i.e. $\frac{d y}{d x}=20 x^{3}+4-\frac{1}{x^{3}}-\frac{1}{2 \sqrt{x^{3}}}$

Problem 5. Find the differential coefficients of: (a) $y=3 \sin 4 x$ (b) $f(t)=2 \cos 3 t$ with respect to the variable
(a) When $y=3 \sin 4 x$ then $\frac{d y}{d x}=(3)(4 \cos 4 x)$

$$
=12 \cos 4 x
$$

(b) When $f(t)=2 \cos 3 t$ then

$$
f^{\prime}(t)=(2)(-3 \sin 3 t)=-6 \sin 3 t
$$

Problem 6. Determine the derivatives of:
(a) $y=3 e^{5 x}$
(b) $f(\theta)=\frac{2}{e^{3 \theta}}$
(c) $y=6 \ln 2 x$
(a) When $y=3 e^{5 x}$ then $\frac{d y}{d x}=(3)(5) e^{5 x}=\mathbf{1 5} e^{5 x}$
(b) $f(\theta)=\frac{2}{e^{3 \theta}}=2 e^{-3 \theta}$, thus

$$
f^{\prime}(\theta)=(2)(-3) e^{-3 \theta}=-6 e^{-3 \theta}=\frac{\mathbf{- 6}}{\mathbf{e}^{3 \theta}}
$$

(c) When $y=6 \ln 2 x$ then $\frac{d y}{d x}=6\left(\frac{1}{x}\right)=\frac{6}{x}$

Problem 7. Find the gradient of the curve y $=3 x^{4}-2 x^{2}+5 x-2$ at the points $(0,-2)$ and $(1,4)$

The gradient of a curve at a given point is given by the corresponding value of the derivative. Thus, since $y=3 x^{4}-2 x^{2}+5 x-2$ then the gradient $=\frac{d y}{d x}=12 x^{3}-4 x+5$
At the point $(0,-2), x=0$.
Thus the gradient $=12(0)^{3}-4(0)+5=5$
At the point (1, 4), $x=1$.
Thus the gradient $=12(1)^{3}-4(1)+5=\mathbf{1 3}$

Problem 8. Determine the co-ordinates of the point on the graph $y=3 x^{2}-7 x+2$ where the gradient is -1

The gradient of the curve is given by the derivative.
When $y=3 x^{2}-7 x+2$ then $\frac{d y}{d x}=6 x-7$
Since the gradient is -1 then $6 x-7=-1$, from which, $x=1$
When $x=1, y=3(1)^{2}-7(1)+2=-2$
Hence the gradient is $\mathbf{- 1}$ at the point $(1,-2)$

B. Differentiation of a product

When $y=u v$, an $\mathrm{d} u$ and v are both functions of x,
then

$$
\frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

This is known as the product rule.

Problem 9. Find the differential coefficient of:

$$
y=3 x^{2} \sin 2 x
$$

$3 x^{2} \sin 2 x$ is a product of two terms $3 x^{2}$ and $\sin 2 x$. Let $u=3 x^{2}$ and $v=\sin 2 x$
Using the product rule:

$$
\begin{array}{rlrl}
\frac{d y}{d x} & =u \quad \frac{d v}{d x} & + & v \\
\downarrow & \downarrow & \frac{d u}{d x} \\
\text { gives: } \quad \frac{d y}{d x} & =\left(3 x^{2}\right)(2 \cos 2 x)+(\sin 2 x)(6 x) \\
\text { i.e. } \quad \frac{d y}{d x} & =6 x^{2} \cos 2 x+6 x \sin 2 x \\
& =\mathbf{6 x}(\boldsymbol{x} \cos 2 x+\sin 2 x) .
\end{array}
$$

Note that the differential coefficient of a product is not obtained by merely differentiating each term and multiplying the two answers together. The product rule formula must be used when differentiating products.

Problem 10. Find the rate of change of y with respect to x given: $y=3 \sqrt{x} \ln 2 x$

The rate of change of y with respect to x is given by $\frac{d y}{d x}$.
$y=3 \sqrt{x} \ln 2 x=3 x^{1 / 2} \ln 2 x$, which is a product.
Let $u=3 x^{1 / 2}$ and $v=\ln 2 \mathrm{x}$

$$
\text { Then } \begin{aligned}
\frac{d y}{d x} & =\begin{array}{ccc}
u & \frac{d v}{d x} & +v \\
\downarrow & \downarrow & \frac{d u}{d x} \\
\downarrow & \downarrow
\end{array} \\
& =\left(3 x^{1 / 2}\right)\left(\frac{1}{x}\right)+(\ln 2 x)\left[3\left(\frac{1}{2}\right) x^{(1 / 2)-1}\right] \\
& =3 x^{(1 / 2)-1}+(\ln 2 x)\left(\frac{3}{2}\right) x^{-1 / 2} \\
& =3 x^{-1 / 2}\left(1+\frac{1}{2} \ln 2 x\right)
\end{aligned}
$$

i.e. $\quad \frac{d y}{d x}=\frac{3}{\sqrt{x}}\left(1+\frac{1}{2} \ln 2 x\right)$

Problem 11. Differentiate: $y=x^{3} \cos 3 x \ln x$
Let $u=x^{3} \cos 3 x$ (i.e. a product) and $v=\ln x$
Then $\quad \frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}$
where $\frac{d u}{d x}=\left(x^{3}\right)(-3 \sin 3 x)+(\cos 3 x)\left(3 x^{2}\right)$
and $\quad \frac{d v}{d x}=\frac{1}{x}$
Hence $\frac{d y}{d x}=\left(x^{3} \cos 3 x\right)\left(\frac{1}{x}\right)$

$$
+(\ln x)\left[-3 x^{3} \sin 3 x+3 x^{2} \cos 3 x\right]
$$

$$
=x^{2} \cos 3 x+3 x^{2} \ln x(\cos 3 x-x \sin 3 x)
$$

i.e. $\quad \frac{d y}{d x}=x^{2}\{\cos 3 x+3 \ln x(\cos 3 x-x \sin 3 x)\}$

Problem 12. Determine the rate of change of voltage, given $v=5 t \sin 2 t$ volts, when $t=0.2 \mathrm{~s}$

Rate of change of voltage

$$
\begin{aligned}
=\frac{d v}{d t} & =(5 t)(2 \cos 2 t)+(\sin 2 t)(5) \\
& =10 t \cos 2 t+5 \sin 2 t
\end{aligned}
$$

When $t=0.2$,

$$
\begin{aligned}
\frac{d v}{d t} & =10(0.2) \cos 2(0.2)+5 \sin 2(0.2) \\
& =2 \cos 0.4+5 \sin 0.4
\end{aligned}
$$

(where $\cos 0.4$ means the cosine of 0.4 radians $=$ 0.92106)

Hence

$$
\begin{aligned}
\frac{d v}{d t} & =2(0.92106)+5(0.38942) \\
& =1.8421+1.9471=3.7892
\end{aligned}
$$

i.e. the rate of change of voltage when $t=0.2 \mathrm{~s}$ is 3.79 volts/s, correct to 3 significant figures.

Exercise 8. Differentiating products

C. Differentiation of a quotient

When $y=\frac{u}{v}$, an $\mathrm{d} u$ and v are both functions of x then

$$
d x=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}
$$

This is known as the quotient rule.

Problem 13. Find the differential coefficient of:

$$
y=\frac{4 \sin 5 x}{5 x^{4}}
$$

$\frac{4 \sin 5 x}{5 x^{4}}$ is a quotient. Let $u=4 \sin 5 x$ and $v=5 x^{4}$
(Note that v is always the denominator and u the numerator)

$$
\text { where } \begin{aligned}
\frac{d y}{d x} & =\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}} \\
\text { and } \quad & =(4)(5) \cos 5 x=20 \cos 5 x \\
\text { Hence } \frac{d v}{d x} & =(5)(4) x^{3}=20 x^{3} \\
d x & =\frac{\left(5 x^{4}\right)(20 \cos 5 x)-(4 \sin 5 x)\left(20 x^{3}\right)}{\left(5 x^{4}\right)^{2}} \\
& =\frac{100 x^{4} \cos 5 x-80 x^{3} \sin 5 x}{25 x^{8}} \\
& =\frac{20 x^{3}[5 x \cos 5 x-4 \sin 5 x]}{25 x^{8}}
\end{aligned}
$$

i.e. $\quad \frac{d y}{d x}=\frac{4}{5 x^{5}}(5 x \cos 5 x-4 \sin 5 x)$

Note that the differential coefficient is not obtained by merely differentiating each term in turn and then dividing the numerator by the denominator. The quotient formula must be used when differentiating quotients.

Problem 14. Determine the differential coefficient of: $y=\tan a x$
$y=\tan a x=\frac{\sin a x}{\cos a x}$. Differentiation of $\tan a x$ is thus treated as a quotient with $u=\sin a x$ and $v=\cos a x$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}} \\
& =\frac{(\cos a x)(a \cos a x)-(\sin a x)(-a \sin a x)}{(\cos a x)^{2}} \\
& =\frac{a \cos ^{2} a x+a \sin ^{2} a x}{(\cos a x)^{2}} \\
& =\frac{a\left(\cos ^{2} a x+\sin ^{2} a x\right)}{\cos ^{2} a x} \\
& =\frac{a}{\cos ^{2} a x} \operatorname{since}^{2} \cos ^{2} a x+\sin ^{2} a x=1
\end{aligned}
$$

Hence $\frac{d y}{d x}=\boldsymbol{a} \sec ^{2} a x$ since $\sec ^{2} a x=\frac{1}{\cos ^{2} a x}$

Problem 15. Find the derivative of: $y=\sec a x$
$y=\sec a x=\frac{1}{\cos a x}$ (i.e. a quotient), Let $u=1$ and $v=\cos a x$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}} \\
& =\frac{(\cos a x)(0)-(1)(-a \sin a x)}{(\cos a x)^{2}} \\
& =\frac{a \sin a x}{\cos ^{2} a x}=a\left(\frac{1}{\cos a x}\right)\left(\frac{\sin a x}{\cos a x}\right)
\end{aligned}
$$

i.e. $\frac{d y}{d x}=a \sec a x \tan a x$

Problem 16. Differentiate: $y=\frac{t e^{2 t}}{2 \cos t}$

The function $\frac{t e^{2 t}}{2 \cos t}$ is a quotient, whose numerator is a product.
Let $u=t e^{2 t}$ and $v=2 \cos t$ then
$\frac{d u}{d t}=(t)\left(2 e^{2 t}\right)+\left(e^{2 t}\right)(1)$ and $\frac{d v}{d t}=-2 \sin t$
Hence $\frac{d y}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$

$$
\begin{aligned}
& =\frac{(2 \cos t)\left[2 t e^{2 t}+e^{2 t}\right]-\left(t e^{2 t}\right)(-2 \sin t)}{(2 \cos t)^{2}} \\
& =\frac{4 t e^{2 t} \cos t+2 e^{2 t} \cos t+2 t e^{2 t} \sin t}{4 \cos ^{2} t} \\
& =\frac{2 e^{2 t}[2 t \cos t+\cos t+t \sin t]}{4 \cos ^{2} t}
\end{aligned}
$$

i.e. $\quad \frac{d y}{d x}=\frac{e^{2 t}}{2 \cos ^{2} t}(2 t \cos t+\cos t+t \sin t)$

Problem 17. Determine the gra die nt of the curve $y=\frac{5 x}{2 x^{2}+4}$ at the poin $\left(\sqrt{3}, \frac{\bar{b}}{2}\right)$

Let $y=5 x$ and $v=2 x^{2}+4$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}=\frac{\left(2 x^{2}+4\right)(5)-(5 x)(4 x)}{\left(2 x^{2}+4\right)^{2}} \\
& =\frac{10 x^{2}+20-20 x^{2}}{\left(2 x^{2}+4\right)^{2}}=\frac{20-10 x^{2}}{\left(2 x^{2}+4\right)^{2}}
\end{aligned}
$$

At the point $\left(\sqrt{3}, \frac{\sqrt{3}}{2}\right), x=\sqrt{3}$,
hence the gradient $=\frac{d y}{d x}=\frac{20-10(\sqrt{3})^{2}}{\left[2(\sqrt{3})^{2}+4\right]^{2}}$

$$
=\frac{20-30}{100}=-\frac{\mathbf{1}}{\mathbf{1 0}}
$$

D. Function of a function

It is often easier to make a substitution before differentiating.
If y is a function of x then $\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}$
This is known as the 'function of a function' rule (or sometimes the chain rule).
For example, if $y=(3 x-1)^{9}$ then, by making the substitution $u=(3 x-1), y=u^{9}$, which is of the 'standard' from.
Hence $\frac{d y}{d u}=9 u^{8}$ and $\frac{d u}{d x}=3$
Then $\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}=\left(9 u^{8}\right)(3)=27 u^{8}$
Rewriting u as $(3 x-1)$ gives: $\frac{\boldsymbol{d y}}{\boldsymbol{d x}}=\mathbf{2 7}(\mathbf{3 x}-\mathbf{1})^{\mathbf{8}}$
Since y is a function of u, and u is a function of x, then y is a function of a function of x.

Exercise 9. Differentiating quotients

Problem 18. Differentiate: $y=3 \cos \left(5 x^{2}+2\right)$
Let $u=5 x^{2}+2$ then $y=3 \cos u$
Hence $\frac{d u}{d x}=10 x$ and $\frac{d y}{d u}=-3 \sin u$
Using the function of a function rule,
$\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}=(-3 \sin u)(10 x)=-30 x \sin u$
Rewriting u as $5 x^{2}+2$ gives:

$$
\frac{d y}{d x}=-30 x \sin \left(5 x^{2}+2\right)
$$

Problem 19. Find the derivative of:

$$
y=\left(4 t^{3}-3 t\right)^{6}
$$

Let $u=4 t^{3}-3 t$, then $y=u^{6}$
Hence $\frac{d u}{d t}=12 t^{2}-3$ and $\frac{d y}{d t}=6 u^{5}$
Using the function of a function rule,

$$
\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}=\left(6 u^{5}\right)\left(12 t^{2}-3\right)
$$

Rewriting u as $\left(4 t^{3}-3 t\right)$ gives:

$$
\begin{aligned}
\frac{d y}{d t} & =6\left(4 t^{3}-3 t\right)^{5}\left(12 t^{2}-3\right) \\
& =\mathbf{1 8}\left(\mathbf{4} t^{2}-\mathbf{1}\right)\left(4 t^{3}-\mathbf{3} t\right)^{5}
\end{aligned}
$$

Problem 20. Determine the differential
coefficient of: $y=\sqrt{3 x^{2}+4 x-1}$

$$
y=\sqrt{3 x^{2}+4 x-1}=\left(3 x^{2}+4 x-1\right)^{1 / 2}
$$

Let $u=3 x^{2}+4 x-1$ then $y=u^{1 / 2}$
Hence $\frac{d u}{d x}=6 x+4$ and $\frac{d y}{d u}=\frac{1}{2} u^{-1 / 2}=\frac{1}{2 \sqrt{u}}$
Using the function of a function rule,

$$
\begin{aligned}
& \quad \frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}=\left(\frac{1}{2 \sqrt{u}}\right)(6 x+4)=\frac{3 x+2}{\sqrt{u}} \\
& \text { i.e. } \quad \frac{\boldsymbol{d y}}{\boldsymbol{d x}}=\frac{\mathbf{3 x + 2}}{\sqrt{\mathbf{3 \boldsymbol { x } ^ { 2 } + \mathbf { 4 x - 1 }}}}
\end{aligned}
$$

Problem 21. Differentiate: $y=3 \tan ^{4} 3 x$

Let $u=\tan 3 x$ then $y=3 u^{4}$
Hence $\quad \frac{d u}{d x}=3 \sec ^{2} 3 x$
and $\quad \frac{d y}{d u}=12 u^{3}$
Then $\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}=\left(12 u^{3}\right)\left(3 \sec ^{2} 3 x\right)$

$$
=12(\tan 3 x)^{3}\left(3 \sec ^{2} 3 x\right)
$$

i.e. $\frac{d y}{d x}=36 \tan ^{3} 3 x \sec ^{2} 3 x$

Problem 22. Find the differential coefficient of:

$$
y=\frac{2}{\left(2 t^{3}-5\right)^{4}}
$$

$y=\frac{2}{\left(2 t^{3}-5\right)^{4}}=2\left(2 t^{3}-5\right)^{-4}$. Let $u=\left(2 t^{3}-5\right)$, then $y=2 u^{-4}$
Hence $\frac{d u}{d t}=6 t^{2}$ and $\frac{d y}{d u}=-8 u^{-5}=\frac{-8}{u^{5}}$
Then $\frac{d y}{d t}=\frac{d y}{d u} \times \frac{d u}{d t}=\left(\frac{-8}{u^{5}}\right)\left(6 t^{2}\right)=\frac{\mathbf{- 4 8} \boldsymbol{t}^{\mathbf{2}}}{\left(\mathbf{2 t ^ { \mathbf { 3 } } - \mathbf { 5 }) ^ { 5 }}\right.}$

Exercise 10. Function of a function

E. Successive differentiation

When a function $y=f(x)$ is differentiated with respect to x the differential coefficient is written as $\frac{d y}{d x}$ or $f^{\prime}(x)$. If the expression is differentiated again, the second differential coefficient is obtained and is written as $\frac{d^{2} y}{d x^{2}}$ (pronounced dee two y by dee x squared) or $f^{\prime \prime}(x)$ (pronounced f double-dash x). By successive differentiation further higher derivatives such as $\frac{d^{3} y}{d x^{3}}$ and $\frac{d^{4} y}{d x^{4}}$ may be obtained.
Thus if $y=3 x^{4}$,

$$
\begin{aligned}
\frac{d y}{d x} & =12 x^{3}, \frac{d^{2} y}{d x^{2}}=36 x^{2} \\
\frac{d^{3} y}{d x^{3}} & =72 x, \frac{d^{4} y}{d x^{4}}=72 \text { and } \frac{d^{5} y}{d x^{5}}=0
\end{aligned}
$$

Problem 23. If $f(x)=2 x^{5}-4 x^{3}+3 x-5$, find $f^{\prime \prime}(x)$

$$
\begin{aligned}
f(x) & =2 x^{5}-4 x^{3}+3 x-5 \\
f^{\prime}(x) & =10 x^{4}-12 x^{2}+3 \\
f^{\prime \prime}(\boldsymbol{x}) & =40 x^{3}-24 x=4 x\left(\mathbf{1 0} x^{2}-\mathbf{6}\right)
\end{aligned}
$$

Problem 24. If $y=\cos x-\sin x$, e valuate x, in the range $0 \leq x \leq \frac{\pi}{2}$, when $\frac{d^{2} y}{d x^{2}}$ is zero

Since $y=\cos x-\sin x, \quad \frac{d y}{d x}=-\sin x-\cos x \quad$ and $\frac{d^{2} y}{d x^{2}}=-\cos x+\sin x$
When $\frac{d^{2} y}{d x^{2}}$ is zero, $-\cos x+\sin x=0$,
i.e. $\sin x=\cos x$ or $\frac{\sin x}{\cos x}=1$

Hence $\tan x=1$ and $x=\tan ^{-1} 1=45^{\circ}$ or $\frac{\pi}{4}$ rads in the range $0 \leq x \leq \frac{\pi}{2}$

Problem 25. Given $y=2 x e^{-3 x}$ show that

$$
\frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}+9 y=0
$$

$y=2 x e^{-3 x}$ (i.e. a product)
Hence $\quad \frac{d y}{d x}=(2 x)\left(-3 e^{-3 x}\right)+\left(e^{-3 x}\right)(2)$

$$
=-6 x e^{-3 x}+2 e^{-3 x}
$$

$$
\frac{d^{2} y}{d x^{2}}=\left[(-6 x)\left(-3 e^{-3 x}\right)+\left(e^{-3 x}\right)(-6)\right]
$$

$$
+\left(-6 e^{-3 x}\right)
$$

$$
=18 x e^{-3 x}-6 e^{-3 x}-6 e^{-3 x}
$$

i.e. $\quad \frac{d^{2} y}{d x^{2}}=18 x e^{-3 x}-12 e^{-3 x}$

Substituting values into $\frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}+9 y$ gives:

$$
\begin{aligned}
& \begin{aligned}
\left(18 x e^{-3 x}-12 e^{-3 x}\right)+6\left(-6 x e^{-3 x}\right. & \left.+2 e^{-3 x}\right) \\
& +9\left(2 x e^{-3 x}\right) \\
=18 x e^{-3 x}-12 e^{-3 x} & -36 x e^{-3 x} \\
& +12 e^{-3 x}+18 x e^{-3 x}=0
\end{aligned}
\end{aligned}
$$

Thus when $y=2 x e^{-3 x}, \frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}+9 y=0$

Problem 26. Evaluate $y \frac{d^{2} y}{d \theta^{2}}$ when $\theta=0$ given: $=4 \mathrm{sec} 2 \theta$

Since $y=4 \sec 2 \theta$, then

$$
\begin{aligned}
\frac{d y}{d \theta}= & (4)(2) \sec 2 \theta \tan 2 \theta \text { (from Problem 15) } \\
= & 8 \sec 2 \theta \tan 2 \theta \text { (i.e. a product) } \\
\frac{d^{2} y}{d \theta^{2}}= & (8 \sec 2 \theta)\left(2 \sec ^{2} 2 \theta\right) \\
& \quad+(\tan 2 \theta)[(8)(2) \sec 2 \theta \tan 2 \theta] \\
& =16 \sec ^{3} 2 \theta+16 \sec 2 \theta \tan ^{2} 2 \theta
\end{aligned}
$$

When $\theta=0$,

$$
\begin{aligned}
\frac{d^{2} y}{d \theta^{2}} & =16 \sec ^{3} 0+16 \sec 0 \tan ^{2} 0 \\
& =16(1)+16(1)(0)=\mathbf{1 6}
\end{aligned}
$$

