Module 13 Volumes of Solids of Revolution

A. Introduction

If the area under the curve $y=f(x)$, (shown in Fig. 15(a)), between $x=a$ and $x=b$ is rotated 360 about the x-axis, then a volume known as a solid of revolution is produced as shown in Fig. 15(b).

Figure 15
The volume of such a solid may be determined precisely using integration.
(i) Let the area shown in Fig. 15(a) be divided into a number of strips each of width δx. One such strip is shown shaded.
(ii) When the area is rotated 360° about the x-axis, each strip produces a solid of revolution approximating to a circular disc of radius y and thickness δx. Volume of disc $=($ circular crosssectional area) $($ thickness $)=\left(\pi y^{2}\right)(\delta x)$
(iii) Total volume, V, between ordinates $x=a$ and $x=b$ is given by:

$$
\text { Volume } V=\operatorname{limit}_{\delta x \rightarrow 0} \sum_{x=a}^{x=b} \pi y^{2} \delta x=\int_{a}^{b} \pi y^{2} d x
$$

If a curve $x=f(y)$ is rotated about the y-axis 360° between the limits $y=c$ and $y=d$, as shown in Fig. 16, then the volume generated is given by:

Volume $V=\operatorname{limit}_{\delta y \rightarrow 0}^{y=d} \sum_{y=c}^{y} \pi x^{2} \delta y=\int_{c}^{d} \pi x^{2} d y$

Figure 16

Solved problems on volumes of solids of revolution

Problem 1. Determine the volume of the solid of revolution formed when the curve $y=2$ is rotated 360° about the x-axis between the limits $x=0$ to $x=3$

When $y=2$ is rotated 360° about the x-axis between x $=0$ and $x=3$ (see Fig. 17):
volume generated

$$
\begin{aligned}
& =\int_{0}^{3} \pi y^{2} d x=\int_{0}^{3} \pi(2)^{2} d x \\
& =\int_{0}^{3} 4 \pi d x=4 \pi[x]_{0}^{3}=\mathbf{1 2} \pi \text { cubic units }
\end{aligned}
$$

[Check: The volume generated is a cylinder of radius 2 and height 3.
Volume of cylinder $=\pi r^{2} h=\pi(2)^{2}(3)=\mathbf{1 2} \pi$ cubic units.]

Figure 17

Problem 2. Find the volume of the solid of revolution when the cure $y=2 x$ is rotated one revolution about the x-axis between the limits

$$
x=0 \text { and } x=5
$$

When $y=2 x$ is revolved one revolution about the x-axis between $x=0$ and $x=5$ (see Fig. 18) then: volume generated

$$
\begin{aligned}
& =\int_{0}^{5} \pi y^{2} d x=\int_{0}^{5} \pi(2 x)^{2} d x \\
& =\int_{0}^{5} 4 \pi x^{2} d x=4 \pi\left[\frac{x^{3}}{3}\right]_{0}^{5}
\end{aligned}
$$

$$
=\frac{500 \pi}{3}=166 \frac{2}{3} \pi \text { cubic units }
$$

Figure 18
[Check: The volume generated is a cone of radius 10 and height 5 . Volume of cone

$$
\begin{aligned}
=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi(10)^{2} 5 & =\frac{500 \pi}{3} \\
& \left.=\mathbf{1 6 6} \frac{\mathbf{2}}{\mathbf{3}} \pi \text { cubic units. }\right]
\end{aligned}
$$

Problem 3. The curve $y=x^{2}+4$ is rotated one revolution about the x-axis between the limits $x=1$ and $x=4$. Determine the volume of the solid of revolution produced

Figure 19
Revolving the shaded area shown in Fig. 19 about the x-axis 360° produces a solid of revolution given by:

$$
\begin{aligned}
\text { Volume } & =\int_{1}^{4} \pi y^{2} d x=\int_{1}^{4} \pi\left(x^{2}+4\right)^{2} d x \\
& =\int_{1}^{4} \pi\left(x^{4}+8 x^{2}+16\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& =\pi\left[\frac{x^{5}}{5}+\frac{8 x^{3}}{3}+16 x\right]_{1}^{4} \\
& =\pi[(204.8+170.67+64)-(0.2+2.67+16)] \\
& =\mathbf{4 2 0 . 6} \pi \text { cubic units }
\end{aligned}
$$

Problem 4. If the curve in Problem 3 is revolved about the y-axis between the same limits, determine the volume of the solid of revolution produced

The volume produced when the curve $y=x^{2}+4$ is rotated about the y-axis between $y=5$ (when $x=1$) and $y=20$ (when $x=4$), i.e. rotating area ABCD of Fig. 19 about the y-axis is given by:

$$
\text { volume }=\int_{5}^{20} \pi x^{2} d y
$$

Since $y=x^{2}+4$, then $x^{2}=y-4$

$$
\begin{aligned}
\text { Hence volume } & =\int_{5}^{20} \pi(y-4) d y=\pi\left[\frac{y^{2}}{2}-4 y\right]_{5}^{20} \\
& =\pi[(120)-(-7.5)] \\
& =\mathbf{1 2 7 . 5} \pi \text { cubic units }
\end{aligned}
$$

Soled problems on
 volumes of solids of revolution

Problem 5. The area enclosed by the curve $y=3 e^{\frac{x}{3}}$, the x-axis and ordinates $x=-1$ and $x=3$ is rotated 360° about the x-axis. Determine the volume generated

Figure 20

A sketch of $y=3 e^{\frac{x}{3}}$ is shown in Fig. 20. When the shaded area is rotated 360° about the x-axis then:

$$
\begin{aligned}
\text { volume generated } & =\int_{-1}^{3} \pi y^{2} d x \\
& =\int_{-1}^{3} \pi\left(3 e^{\frac{x}{3}}\right)^{2} d x \\
& =9 \pi \int_{-1}^{3} e^{\frac{2 x}{3}} d x
\end{aligned}
$$

Exercise 17. Volumes of solids of revolution

$$
\begin{aligned}
& =9 \pi\left[\frac{e^{\frac{2 x}{3}}}{\frac{2}{3}}\right]_{-1}^{3} \\
& =\frac{27 \pi}{2}\left(e^{2}-e^{-\frac{2}{3}}\right) \\
& =92.82 \pi \text { cubic units }
\end{aligned}
$$

Problem 6. Determine the volume generated when the area above the x-axis bounded by the curve $x^{2}+y^{2}=9$ and the ordinates $x=3$ and $x=-3$ is rotated one revolution about the x-axis

Figure 21 sho ws the part of the curve $x^{2}+y^{2}=9$ lying above the -axis, Since, in general, $x^{2}+y^{2}=r^{2}$ represents a circle, centre 0 and radius r, then $x^{2}+$ $y^{2}=9$ represents a circle, centre 0 and radius 3 . When the semi-circular area of Fig. 21 is rotated one revolution about the x-axis then:

$$
\begin{aligned}
\text { volume generated } & =\int_{-3}^{3} \pi y^{2} d x \\
& =\int_{-3}^{3} \pi\left(9-x^{2}\right) d x \\
& =\pi\left[9 x-\frac{x^{3}}{3}\right]_{-3}^{3} \\
& =\pi[(18)-(-18)] \\
& =\mathbf{3 6} \pi \text { cubic units }
\end{aligned}
$$

Figure 21

(Check: The volume generated is a sphere of radius 3. Volume of sphere $=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi(3)^{3}=$ 36π cubic units.)

Problem 7. Calculate the volume of a frustum of a sphere of radius 4 cm that lies between two parallel planes at 1 cm and 3 cm from the centre and on the same side of it

Figure 22

The volume of a frustum of a sphere may be determined by integration by rotating the curve $x^{2}+y^{2}=4^{2}$ (i.e. a circle, centre 0 , radius 4) one revolution about the x-axis, between the limits $x=1$ and $x=3$ (i.e. rotating the shaded area of Fig. 22).

$$
\begin{aligned}
\text { Volume of frustum } & =\int_{1}^{3} \pi y^{2} d x \\
& =\int_{1}^{3} \pi\left(4^{2}-x^{2}\right) d x \\
& =\pi\left[16 x-\frac{x^{3}}{3}\right]_{1}^{3} \\
& =\pi\left[(39)-\left(15 \frac{2}{3}\right)\right] \\
& =\mathbf{2 3} \frac{\mathbf{1}}{\mathbf{3}} \boldsymbol{\pi} \text { cubic units }
\end{aligned}
$$

Problem 8. The area enclosed between the two parabolas $y=x^{2}$ and $y^{2}=8 x$ is rotated 360° about the x-axis. Determine the volume of the solid produced

The volume produced by revolving the shaded area about the x-axis is given by: [(volume
produced by revolving $\left.y^{2}=8 x\right)-($ volume produced by revolving $y=x^{2}$)]

$$
\text { i.e. volume } \begin{aligned}
& =\int_{0}^{2} \pi(8 x) d x-\int_{0}^{2} \pi\left(x^{4}\right) d x \\
& =\pi \int_{0}^{2}\left(8 x-x^{4}\right) d x=\pi\left[\frac{8 x^{2}}{2}-\frac{x^{5}}{5}\right]_{0}^{2} \\
& =\pi\left[\left(16-\frac{32}{5}\right)-(0)\right] \\
& =9.6 \pi \text { cubic units }
\end{aligned}
$$

Exercise 18. Volumes of solids of revolution

