Module 12 Areas under & between curves

Area under a curve

The area shown shaded in Fig. 1 may be determined using approximate methods (such as the trapezoidal rule, the mid-ordinate rule or Simpson's rule) or, more precisely, by using integration.

Figure 1

(i) Let A be the area shown shaded in Fig. 1 and let this area be divided into a number of strips each of width δx . One such strip is shown and let the area of this strip be δA .

Then:
$$\delta A \approx y \delta x$$
 (1)

The accuracy of statement (1) increases when the width of each strip is reduced, i.e. area A is divided into a greater number of strips.

(ii) Area A is equal to the sum of all the strips from x = a to x = b,

i.e.
$$A = \lim_{\delta x \to 0} \sum_{x=a}^{x=b} y \,\delta x \tag{2}$$

(iii) From statement (1),
$$\frac{\delta A}{\delta x} \approx y$$
 (3)

In the limit, as δx approaches zero, $\frac{\delta A}{\delta x}$ becomes the differential coefficient $\frac{dA}{dx}$

Hence
$$\lim_{\delta x \to 0} \left(\frac{\delta A}{\delta x} \right) = \frac{dA}{dx} = y$$
, from statement (3).

By integration,

$$\int \frac{dA}{dx}dx = \int y \, dx \quad \text{i.e.} \quad A = \int y \, dx$$

The ordinates x = a and x = b limit the area and such ordinate values are shown as limits. Hence

$$A = \int_{a}^{b} y \, dx \tag{4}$$

(iv) Equating statements (2) and (4) gives:

Area
$$A = \lim_{\delta x \to 0} \sum_{x=a}^{x=b} y \, \delta x = \int_{a}^{b} y \, dx$$
$$= \int_{a}^{b} f(x) \, dx$$

(v) If the area between a curve x = f(y), the y-axis and ordinates y = p and y = q is required, then

area =
$$\int_{p}^{q} x \, dy$$

Thus, determining the area under a curve by integration merely involves evaluating a definite integral.

There are several instances in engineering and science where the area beneath a curve needs to be accurately determined. For example, the areas between limits of a:

velocity/time graph gives distance travelled, force/distance graph gives work done, voltage/current graph gives power, and so on.

Should a curve drop below the x-axis, then y (= f(x)) becomes negative and f(x) dx is negative. When determining such areas by integration, a negative sign is placed before the integral. For the curve shown in Fig. 2, the total shaded area is given by (area E + area F + area G).

By integration, total shaded area

$$= \int_a^b f(x) \, dx - \int_b^c f(x) \, dx + \int_c^d f(x) \, dx$$

(Note that this is **not** the same as $\int_a^d f(x) dx$.) It is usually necessary to sketch a curve in order to check whether it crosses the *x*-axis.

Solved problems on the area under a curve

Problem 1. Determine the area enclosed by y = 2x + 3, the x-axis and ordinates x = 1 and x = 4

y=2x+3 is a straight line graph as shown in Fig. 3, where the required area is shown shaded. By integration,

shaded area =
$$\int_{1}^{4} y \, dx$$

= $\int_{1}^{4} (2x+3) \, dx$
= $\left[\frac{2x^2}{2} + 3x\right]_{1}^{4}$
= $[(16+12) - (1+3)]$
= 24 square units

[This answer may be checked since the shaded area is a trapezium.

Area of trapezium

$$= \frac{1}{2} \left(\begin{array}{c} \text{sum of parallel} \\ \text{sides} \end{array} \right) \left(\begin{array}{c} \text{perpendicular distance} \\ \text{between parallel sides} \end{array} \right)$$
$$= \frac{1}{2} (5+11)(3)$$
$$= 24 \text{ square units}]$$

Problem 2. The velocity v of a body t seconds after a certain instant is: $(2t^2+5)$ m/s. Find by integration how far it moves in the interval from t=0 to t=4 s

Since $2t^2+5$ is a quadratic expression, the curve $v=2t^2+5$ is a parabola cutting the *v*-axis at v=5, as shown in Fig. 4.

The distance travelled is given by the area under the v/t curve (shown shaded in Fig. 4).

By integration,

shaded area
$$= \int_0^4 v \, dt$$

= $\int_0^4 (2t^2 + 5) \, dt$
= $\left[\frac{2t^3}{3} + 5t\right]_0^4$
= $\left(\frac{2(4^3)}{3} + 5(4)\right) - (0)$

i.e. distance travelled = 62.67 m

Problem 3. Sketch the graph $y = x^3 + 2x^2 - 5x - 6$ between x = -3 and x = 2 and determine the area enclosed by the curve and the *x*-axis

A table of values is produced and the graph sketched as shown in Fig. 5 where the area enclosed by the curve and the x-axis is shown shaded.

x	-3	-2	-1	0	1	2
x^3	-27	-8	-1	0	1	8
$2x^{2}$	18	8	2	0	2	8
-5x	15	10	5	0	-5	-10
-6	-6	-6	-6	-6	-6	-6
У	0	4	0	-6	-8	0

Shaded area = $\int_{-3}^{-1} y \, dx - \int_{-1}^{2} y \, dx$, the minus sign before the second integral being necessary since the enclosed area is below the *x*-axis. Hence shaded area

$$= \int_{-3}^{-1} (x^{3} + 2x^{2} - 5x - 6) dx$$

$$- \int_{-1}^{2} (x^{3} + 2x^{2} - 5x - 6) dx$$

$$= \left[\frac{x^{4}}{4} + \frac{2x^{3}}{3} - \frac{5x^{2}}{2} - 6x \right]_{-3}^{-1}$$

$$- \left[\frac{x^{4}}{4} + \frac{2x^{3}}{3} - \frac{5x^{2}}{2} - 6x \right]_{-1}^{2}$$

$$= \left[\left\{ \frac{1}{4} - \frac{2}{3} - \frac{5}{2} + 6 \right\} \right]$$

$$- \left\{ \frac{81}{4} - 18 - \frac{45}{2} + 18 \right\} \right]$$

$$- \left[\left\{ 4 + \frac{16}{3} - 10 - 12 \right\} \right]$$

$$- \left[\left\{ 4 + \frac{16}{3} - 10 - 12 \right\} \right]$$

$$- \left[\left\{ 3 \frac{1}{12} \right\} - \left\{ -2\frac{1}{4} \right\} \right]$$

$$- \left[\left\{ -12\frac{2}{3} \right\} - \left\{ 3\frac{1}{12} \right\} \right]$$

$$= \left[5\frac{1}{3} \right] - \left[-15\frac{3}{4} \right]$$

$$= 21\frac{1}{12} \text{ or } 21.08 \text{ square units}$$

Problem 4. Determine the area enclosed by the curve $y = 3x^2 + 4$, the *x*-axis and ordinates x = 1 and x = 4 by (a) the trapezoidal rule, (b) the

mid-ordinate rule, (c) Simpson's rule, and (d) integration

Figure 6

The curve $y = 3x^2 + 4$ is shown plotted in Fig. 6.

(a) By the trapezoidal rule,

Area =
$$\binom{\text{width of}}{\text{interval}} \left[\frac{1}{2} \binom{\text{first} + \text{last}}{\text{ordinate}} + \binom{\text{sum of}}{\text{remaining}} \right]$$

Selecting 6 intervals each of width 0.5 gives:

Area = (0.5)
$$\left[\frac{1}{2}(7+52) + 10.75 + 16 + 22.75 + 31 + 40.75\right]$$

= 75.375 square units

(b) **By the mid-ordinate rule**,

area = (width of interval) (sum of mid-ordinates). Selecting 6 intervals, each of width 0.5 gives the mid-ordinates as shown by the broken lines in Fig. 6.

Thus, area =
$$(0.5)(8.5 + 13 + 19 + 26.5)$$

$$+35.5+46$$
)

(c) By Simpson's rule,

area =
$$\frac{1}{3} \left(\substack{\text{width of}\\\text{interval}} \right) \left[\left(\substack{\text{first + last}\\\text{ordinates}} \right) + 4 \left(\substack{\text{sum of even}\\\text{ordinates}} \right) + 2 \left(\substack{\text{sum of even}\\\text{odd ordinates}} \right) \right]$$

Selecting 6 intervals, each of width 0.5, gives:

area =
$$\frac{1}{3}(0.5)[(7+52) + 4(10.75 + 22.75 + 40.75) + 2(16 + 31)]$$

= 75 square units

(d) By integration, shaded area

$$= \int_{1}^{4} y \, dx$$
$$= \int_{1}^{4} (3x^{2} + 4) \, dx$$
$$= \left[x^{3} + 4x\right]_{1}^{4}$$
$$= 75 \text{ square units}$$

Integration gives the precise value for the area under a curve. In this case Simpson's rule is seen to be the most accurate of the three approximate methods.

Problem 5. Find the area enclosed by the curve $y = \sin 2x$, the *x*-axis and the ordinates x = 0 and $x = \pi/3$

A sketch of $y = \sin 2x$ is shown in Fig. 7.

Figure 7

(Note that $y = \sin 2x$ has a period of $\frac{2\pi}{2}$, i.e. π radians.)

Shaded area
$$= \int_{0}^{\pi/3} y \, dx$$

 $= \int_{0}^{\pi/3} \sin 2x \, dx$
 $= \left[-\frac{1}{2} \cos 2x \right]_{0}^{\pi/3}$
 $= \left\{ -\frac{1}{2} \cos \frac{2\pi}{3} \right\} - \left\{ -\frac{1}{2} \cos 0 \right]$
 $= \left\{ -\frac{1}{2} \left(-\frac{1}{2} \right) \right\} - \left\{ -\frac{1}{2} (1) \right\}$
 $= \frac{1}{4} + \frac{1}{2} = \frac{3}{4}$ square units

Exercise 14. Area under curves

Solved problems on the area under a curve

Problem 6. A gas expands according to the law pv = constant. When the volume is 3 m^3 the pressure is 150 kPa. Given that work done $= \int_{v_1}^{v_2} p \, dv$, determine the work done as the gas expands from 2 m^3 to a volume of 6 m^3

pv = constant. When $v = 3 \text{ m}^3$ and p = 150 kPa the constant is given by $(3 \times 150) = 450 \text{ kPa} \text{ m}^3$ or 450 kJ.

Hence
$$pv = 450$$
, or $p = \frac{450}{v}$
Work done $= \int_{2}^{6} \frac{450}{v} dv$
 $= [450 \ln v]_{2}^{6} = 450[\ln 6 - \ln 2]$
 $= 450 \ln \frac{6}{2} = 450 \ln 3 = 494.4 \text{ kJ}$

Problem 7. D eter mine the area enclosed by the curve $y = 4 \cos\left(\frac{\theta}{2}\right)$ the θ -axis and ordinates $\theta = 0$ and $\theta = \frac{\pi}{2}$

The curve $y = 4\cos(\theta/2)$ is shown in Fig. 8.

Figure 8

(Note that $y = 4\cos\left(\frac{\theta}{2}\right)$ has a maximum value of 4 and period $2\pi/(1/2)$, i.e. 4π rads.) Shaded area $= \int_0^{\pi/2} y \, d\theta = \int_0^{\pi/2} 4\cos\frac{\theta}{2} d\theta$ $= \left[4\left(\frac{1}{\frac{1}{2}}\right)\sin\frac{\theta}{2}\right]_0^{\pi/2}$

$$= \left(8\sin\frac{\pi}{4}\right) - (8\sin 0)$$
$$= 5.657 \text{ square units}$$

Problem 8. Determine the area bounded by the curve $y = 3e^{t/4}$, the *t*-axis and ordinates t = -1 and t = 4, correct to 4 significant figures

A table of values is produced as shown.

t	-1	0	1	2	3	4
$y = 3e^{t/4}$	2.34	3.0	3.85	4.95	6.35	8.15

Since all the values of *y* are positive the area required is wholly above the *t*-axis.

Hence area
$$= \int_{1}^{4} y \, dt$$

 $= \int_{1}^{4} 3e^{t/4} dt = \left[\frac{3}{\left(\frac{1}{4}\right)}e^{t/4}\right]_{-1}^{4}$
 $= 12 \left[e^{t/4}\right]_{-1}^{4} = 12(e^{1} - e^{-1/4})$
 $= 12(2.7183 - 0.7788)$
 $= 12(1.9395) = 23.27$ square units

Problem 9. Sketch the curve $y = x^2 + 5$ between x = -1 and x = 4. Find the area enclosed by the curve, the *x*-axis and the ordinates x = 0 and x = 3. Determine also, by integration, the area enclosed by the curve and the *y*-axis, between the same limits

A table of values is produced and the curve $y=x^2+5$ plotted as shown in Fig. 9.

When x = 3, $y = 3^2 + 5 = 14$, and when x = 0, y = 5.

Figure 9

Since $y = x^2 + 5$ then $x^2 = y - 5$ and $x = \sqrt{y-5}$ The area enclosed by the curve $y = x^2 + 5$ (i.e. $x = \sqrt{y-5}$), the *y*-axis and the ordinates y = 5 and y = 14 (i.e. area *ABC* of Fig.) is given by:

Area =
$$\int_{y=5}^{y=14} x \, dy = \int_{5}^{14} \sqrt{y-5} \, dy$$

= $\int_{5}^{14} (y-5)^{1/2} \, dy$

Let u = y - 5, then $\frac{du}{dy} = 1$ and dy = du

Hence
$$\int (y-5)^{1/2} dy = \int u^{1/2} du = \frac{2}{3} u^{3/2}$$

Since u = y - 5 then

$$\int_{5}^{14} \sqrt{y-5} \, dy = \frac{2}{3} \left[(y-5)^{3/2} \right]_{5}^{14}$$
$$= \frac{2}{3} \left[\sqrt{9^3} - 0 \right]$$

= 18 square units

(Check: From Fig. 9, area BCPQ+area ABC = 24+18=42 square units, which is the area of rectangle ABQP.)

Problem 10. Determine the area between the curve $y = x^3 - 2x^2 - 8x$ and the *x*-axis

$$y = x^{3} - 2x^{2} - 8x = x(x^{2} - 2x - 8)$$
$$= x(x + 2)(x - 4)$$

When y=0, then x=0 or (x+2)=0 or (x-4)=0, i.e. when y=0, x=0 or -2 or 4, which means that the curve crosses the *x*-axis at 0, -2 and 4. Since the curve is a continuous function, only one other co-ordinate value needs to be calculated before a sketch of the curve can be produced. When x = 1, y = -9, showing that the part of the curve between x = 0 and x = 4 is negative. A sketch of $y = x^3 - 2x^2 - 8x$ is shown in Fig. 10. (Another method of sketching Fig. 10 would have been to draw up a table of values.)

Figure 10

Shaded area
$$= \int_{-2}^{0} (x^{3} - 2x^{2} - 8x) dx$$
$$- \int_{0}^{4} (x^{3} - 2x^{2} - 8x) dx$$
$$= \left[\frac{x^{4}}{4} - \frac{2x^{3}}{3} - \frac{8x^{2}}{2} \right]_{-2}^{0}$$
$$- \left[\frac{x^{4}}{4} - \frac{2x^{3}}{3} - \frac{8x^{2}}{2} \right]_{0}^{4}$$
$$= \left(6\frac{2}{3} \right) - \left(-42\frac{2}{3} \right)$$
$$= 49\frac{1}{3} \text{ square units}$$

Area between curves

The area enclosed between curves $y = f_1(x)$ and $y = f_2(x)$ (shown shaded in Fig. 11) is given by:

shaded area
$$= \int_{a}^{b} f_{2}(x) dx - \int_{a}^{b} f_{1}(x) dx$$
$$= \int_{a}^{b} [f_{2}(x) - f_{2}(x)] dx$$

Figure 11

Exercise 15. Areas under curves

Problem 11.	Determine the area enclosed
between the cu	rves $y = x^2 + 1$ and $y = 7 - x$

At the points of intersection, the curves are equal. Thus, equating the *y*-values of each curve gives: $x^2 + 1 = 7 - x$, from which $x^2 + x - 6 = 0$. Factorising gives (x - 2)(x + 3) = 0, from which, x = 2 and x = -3. By firstly determining the points of intersection the range of *x*-values has been found. Tables of values are produced as shown below.

x	-3	-2	-1	0	1	2
$y = x^2 + 1$	10	5	2	1	2	5
x		-3	0		2	
y = 7 - x	ĸ	10	7		5	

A sketch of the two curves is shown in Fig. 12.

Figure 12

Shaded area
$$= \int_{-3}^{2} (7-x)dx - \int_{-3}^{2} (x^{2}+1)dx$$
$$= \int_{-3}^{2} [(7-x) - (x^{2}+1)]dx$$
$$= \int_{-3}^{2} (6-x-x^{2})dx$$
$$= \left[6x - \frac{x^{2}}{2} - \frac{x^{3}}{3} \right]_{-3}^{2}$$
$$= \left(12 - 2 - \frac{8}{3} \right) - \left(-18 - \frac{9}{2} + 9 \right)$$
$$= \left(7\frac{1}{3} \right) - \left(-13\frac{1}{2} \right)$$
$$= 20\frac{5}{6} \text{ square units}$$

Problem 12. (a) Determine the coordinates of the points of intersection of the curves $y = x^2$ and $y^2 = 8x$. (b) Sketch the curves $y = x^2$ and $y^2 = 8x$ on the same axes. (c) Calculate the area enclosed by the two curves

(a) At the points of intersection the coordinates of the curves are equal. When $y=x^2$ then $y^2=x^4$.

Hence at the points of intersection $x^4 = 8x$, by equating the y^2 values.

Thus $x^4 - 8x = 0$, from which $x(x^3 - 8) = 0$, i.e. x = 0 or $(x^3 - 8) = 0$.

Hence at the points of intersection x = 0 or x = 2.

When x = 0, y = 0 and when x = 2, $y = 2^2 = 4$.

Hence the points of intersection of the curves $y=x^2$ and $y^2=8x$ are (0, 0) and (2, 4).

(b) A sketch of $y=x^2$ and $y^2=8x$ is shown in Fig. 13

Figure 13

(c) Shaded area
$$= \int_{0}^{2} \{\sqrt{8x} - x^{2}\} dx$$
$$= \int_{0}^{2} \{(\sqrt{8})x^{1/2} - x^{2}\} dx$$
$$= \left[(\sqrt{8})\frac{x^{3/2}}{(\frac{3}{2})} - \frac{x^{3}}{3}\right]_{0}^{2}$$
$$= \left\{\frac{\sqrt{8}\sqrt{8}}{(\frac{3}{2})} - \frac{8}{3}\right\} - \{0\}$$
$$= \frac{16}{3} - \frac{8}{3} = \frac{8}{3}$$
$$= 2\frac{2}{3} \text{ square units}$$

Problem 13. Determine by integration the area bounded by the three straight lines y=4-x, y=3xand 3y=x

$$= \left(1\frac{1}{3}\right) + \left(6 - 3\frac{1}{3}\right)$$
$$= 4 \text{ square units}$$

Each of the straight lines is shown sketched in Fig. 14.

Figure 14

Shaded area
$$= \int_{0}^{1} \left(3x - \frac{x}{3}\right) dx + \int_{1}^{3} \left[(4 - x) - \frac{x}{3}\right] dx$$
$$= \left[\frac{3x^{2}}{2} - \frac{x^{2}}{6}\right]_{0}^{1} + \left[4x - \frac{x^{2}}{2} - \frac{x^{2}}{6}\right]_{1}^{3}$$
$$= \left[\left(\frac{3}{2} - \frac{1}{6}\right) - (0)\right]$$
$$+ \left[\left(12 - \frac{9}{2} - \frac{9}{6}\right) - \left(4 - \frac{1}{2} - \frac{1}{6}\right)\right]$$

Exercise 16. Areas between curves