Module 11 Integration by parts

A. Introduction

From the product rule of differentiation:

$$
\frac{d}{d x}(u v)=v \frac{d u}{d x}+u \frac{d v}{d x}
$$

where u and v are both functions of x.
Rearranging gives: $u \frac{d v}{d x}=\frac{d}{d x}(u v)-v \frac{d u}{d x}$
Integrating both sides with respect to x gives:

$$
\int u \frac{d v}{d x} d x=\int \frac{d}{d x}(u v) d x-\int v \frac{d u}{d x} d x
$$

ie

$$
\int u \frac{d v}{d x} d x=u v-\int v \frac{d u}{d x} d x
$$

or

$$
\int u d v=u v-\int v d u
$$

This is known as the integration by parts formula and provides a method of integrating such products of simple functions as $\int x e^{x} d x, \int t \sin t d t, \int e^{\theta} \cos \theta d \theta$ and $\int x \ln x d x$.
Given a product of two terms to integrate the initial choice is: 'which part to make equal to u ' and 'which part to make equal to $d v$ '. The choice must be such that the ' u part' becomes a constant after successive differentiation and the ' $d v$ part' can be integrated from standard integrals. Invariable, the following rule holds: 'If a product to be integrated contains an algebraic term (such as x, t^{2} or 3θ) then this term is chosen as the u part. The one exception to this rule is when a ' $\ln x$ ' term is involved; in this case $\ln x$ is chosen as the ' u part'.

Solved problems on integration by parts

Problem 1. Determine: $\int x \cos x d x$

From the integration by parts formula,

$$
\int u d v=u v-\int v d u
$$

Let $u=x$, from which $\frac{d u}{d x}=1$, i.e. $d u=d x$ and let $d v=\cos x d x$, from which $v=\int \cos x d x=\sin x$.

Expressions for $u, d u$ and v are now substituted into the 'by parts' formula as shown below.

i.e. $\int x \cos x d x=x \sin x-(-\cos x)+c$

$$
=x \sin x+\cos x+c
$$

[This result may be checked by differentiating the right hand side,
i.e. $\frac{d}{d x}(x \sin x+\cos x+c)$
$=[(x)(\cos x)+(\sin x)(1)]-\sin x+0$ using the product rule
$=x \cos x$, which is the function being integrated.]

Problem 2. Find: $\int 3 t e^{2 t} d t$

Let $u=3 t$, from which, $\frac{d u}{d t}=3$, i.e. $d u=3 d t$ and let $d v=e^{2 t} d t$, from which, $v=\int e^{2 t} d t=\frac{1}{2} e^{2 t}$ Substituting into $\int u d v=u v-\int v d u$ gives:

$$
\begin{aligned}
\int 3 t e^{2 t} d t & =(3 t)\left(\frac{1}{2} e^{2 t}\right)-\int\left(\frac{1}{2} e^{2 t}\right)(3 d t) \\
& =\frac{3}{2} t e^{2 t}-\frac{3}{2} \int e^{2 t} d t \\
& =\frac{3}{2} t e^{2 t}-\frac{3}{2}\left(\frac{e^{2 t}}{2}\right)+c
\end{aligned}
$$

Hence $\int 3 t e^{2 t} d t=\frac{3}{2} e^{2 t}\left(t-\frac{1}{2}\right)+c$,
which may be checked by differentiating.

Problem 3. Evaluate: $\int_{0}^{\frac{\pi}{2}} 2 \theta \sin \theta d \theta$
Let $u=2 \theta$, from which, $\frac{d u}{d \theta}=2$, i.e. $d u=2 d \theta$ and let $d v=\sin \theta d \theta$, from which,

$$
v=\int \sin \theta d \theta=-\cos \theta
$$

Substituting into $\int u d v=u v-\int v d u$ gives:

$$
\begin{aligned}
\int 2 \theta \sin \theta d \theta & =(2 \theta)(-\cos \theta)-\int(-\cos \theta)(2 d \theta) \\
& =-2 \theta \cos \theta+2 \int \cos \theta d \theta \\
& =-2 \theta \cos \theta+2 \sin \theta+c
\end{aligned}
$$

Hence $\int_{0}^{\frac{\pi}{2}} 2 \theta \sin \theta d \theta$

$$
\begin{aligned}
& =[2 \theta \cos \theta+2 \sin \theta]_{0}^{\frac{\pi}{2}} \\
& =\left[-2\left(\frac{\pi}{2}\right) \cos \frac{\pi}{2}+2 \sin \frac{\pi}{2}\right]-[0+2 \sin 0] \\
& =(-0+2)-(0+0)=\mathbf{2} \\
& \quad \operatorname{sincecos} \frac{\pi}{2}=0 \quad \text { and } \sin \frac{\pi}{2}=1
\end{aligned}
$$

Problem 4. Evaluate: $\int_{0}^{1} 5 x e^{4 x} d x$, correct to 3 significant figures

Let $u=5 x$, from which $\frac{d u}{d x}=5$, i.e. $d u=5 d x$ and let $d v=e^{4 x} d x$, from which, $v=\int e^{4 x} d x=\frac{1}{4} e^{4 x}$
Substituting into $\int u d v=u v-\int v d u$ gives:

$$
\begin{aligned}
\int 5 x e^{4 x} d x & =(5 x)\left(\frac{e^{4 x}}{4}\right)-\int\left(\frac{e^{4 x}}{4}\right)(5 d x) \\
& =\frac{5}{4} x e^{4 x}-\frac{5}{4} \int e^{4 x} d x \\
& =\frac{5}{4} x e^{4 x}-\frac{5}{4}\left(\frac{e^{4 x}}{4}\right)+c \\
& =\frac{5}{4} e^{4 x}\left(x-\frac{1}{4}\right)+c
\end{aligned}
$$

Hence $\int_{0}^{1} 5 x e^{4 x} d x$
$=\left[\frac{5}{4} e^{4 x}\left(x-\frac{1}{4}\right)\right]_{0}^{1}$
$=\left[\frac{5}{4} e^{4}\left(1-\frac{1}{4}\right)\right]-\left[\frac{5}{4} e^{0}\left(0-\frac{1}{4}\right)\right]$
$=\left(\frac{15}{16} e^{4}\right)-\left(-\frac{5}{16}\right)$
$=51.186+0.313=51.499=\mathbf{5 1 . 5}$,
correct to 3 significant figures.

Problem 5. Determine: $\int x^{2} \sin x d x$
Let $u=x^{2}$, from which, $\frac{d u}{d x}=2 x$, i.e. $d u=2 x d x$, and let $d v=\sin x d x$, from which, $v=\int \sin x d x=-\cos x$ Substituting into $\int u d v=u v-\int v d u$ gives:

$$
\begin{aligned}
\int x^{2} \sin x d x & =\left(x^{2}\right)(-\cos x)-\int(-\cos x)(2 x d x) \\
& =-x^{2} \cos x+2\left[\int x \cos x d x\right]
\end{aligned}
$$

The integral, $\int x \cos x d x$, is not a 'standard integral' and it can only be determined by using the integration by parts formula again.

From Problem 1, $\int x \cos x d x=x \sin x+\cos x$
Hence $\int x^{2} \sin x d x$

$$
\begin{aligned}
& =-x^{2} \cos x+2\{x \sin x+\cos x\}+c \\
& =-x^{2} \cos x+2 x \sin x+2 \cos x+c \\
& =\left(2-x^{2}\right) \cos x+2 x \sin x+c
\end{aligned}
$$

In general, if the algebraic term of a product is of power n, then the integration by parts formula is applied n times.

Solved problems on integration by parts

Problem 6. Find: $\int x \ln x d x$

The logarithmic function is chosen as the ' u part' Thus when $u=\ln x$, then $\frac{d u}{d x}=\frac{1}{x}$ i.e. $d u=\frac{d x}{x}$
Letting $d v=x d x$ gives $v=\int x d x=\frac{x^{2}}{2}$
Substituting into $\int u d v=u v-\int v d u$ gives:

$$
\begin{aligned}
& \qquad \begin{aligned}
\int x \ln x d x & =(\ln x)\left(\frac{x^{2}}{2}\right)-\int\left(\frac{x^{2}}{2}\right) \frac{d x}{x} \\
& =\frac{x^{2}}{2} \ln x-\frac{1}{2} \int x d x \\
& =\frac{x^{2}}{2} \ln x-\frac{1}{2}\left(\frac{x^{2}}{2}\right)+c \\
\text { Hence } \quad \int x \ln x d x & =\frac{x^{2}}{2}\left(\ln x-\frac{1}{2}\right)+c \\
& \text { or } \frac{x^{2}}{4}(2 \ln x-1)+c
\end{aligned}
\end{aligned}
$$

Problem 7. Determine: $\int \ln x d x$
$\int \ln x d x$ is the same as $\int(1) \ln x d x$
Let $u=\ln x$, from which, $\frac{d u}{d x}=\frac{1}{x}$ i.e. $d u=\frac{d x}{x}$ and let
$d v=1 d x$, from which, $v=\int 1 d x=x$
Substituting into $\int u d v=u v-\int v d u$ gives:

$$
\begin{aligned}
& \qquad \begin{aligned}
\int \ln x d x & =(\ln x)(x)-\int x \frac{d x}{x} \\
& =x \ln x-\int d x=x \ln x-x+c \\
\text { Hence } \quad \int \ln x d x & =x(\ln x-1)+c
\end{aligned}
\end{aligned}
$$

Problem 8. Evaluate: $\int_{1}^{9} \sqrt{x} \ln x d x$, correct to 3 significant figures

Let $u=\ln x$, from which $d u=\frac{d x}{x}$
and let $d v=\sqrt{x} d x=x^{\frac{1}{2}} d x$, from which,

$$
v=\int x^{\frac{1}{2}} d x=\frac{2}{3} x^{\frac{3}{2}}
$$

Substituting into $\int u d v=u v-\int v d u$ gives:

$$
\begin{aligned}
\int \sqrt{x} \ln x d x & =(\ln x)\left(\frac{2}{3} x^{\frac{3}{2}}\right)-\int\left(\frac{2}{3} x^{\frac{3}{2}}\right)\left(\frac{d x}{x}\right) \\
& =\frac{2}{3} \sqrt{x^{3}} \ln x-\frac{2}{3} \int x^{\frac{1}{2}} d x \\
& =\frac{2}{3} \sqrt{x^{3}} \ln x-\frac{2}{3}\left(\frac{2}{3} x^{\frac{3}{2}}\right)+c \\
& =\frac{2}{3} \sqrt{x^{3}}\left[\ln x-\frac{2}{3}\right]+c
\end{aligned}
$$

Hence $\int_{1}^{9} \sqrt{x} \ln x d x=\left[\frac{2}{3} \sqrt{x^{3}}\left(\ln x-\frac{2}{3}\right)\right]_{1}^{9}$

$$
\begin{aligned}
& =\left[\frac{2}{3} \sqrt{9^{3}}\left(\ln 9-\frac{2}{3}\right)\right]-\left[\frac{2}{3} \sqrt{1^{3}}\left(\ln 1-\frac{2}{3}\right)\right] \\
& =\left[18\left(\ln 9-\frac{2}{3}\right)\right]-\left[\frac{2}{3}\left(0-\frac{2}{3}\right)\right] \\
& =27.550+0.444=27.994=\mathbf{2 8 . 0}
\end{aligned}
$$

correct to 3 significant figures.
Problem 9. Find: $\int e^{a x} \cos b x d x$
When integrating a product of an exponential and a sine or cosine function it is immaterial which part is made equal to ' u '.
Let $u=e^{a x}$, from which $\frac{d u}{d x}=a e^{a x}$, i.e. $d u=a e^{a x} d x$ and let $d v=\cos b x d x$, from which,

$$
v=\int \cos b x d x=\frac{1}{b} \sin b x
$$

Substituting into $\int u d v=u v-\int v d u$ gives:

$$
\begin{align*}
& \int e^{a x} \cos b x d x \\
& \quad=\left(e^{a x}\right)\left(\frac{1}{b} \sin b x\right)-\int\left(\frac{1}{b} \sin b x\right)\left(a e^{a x} d x\right) \\
& \quad=\frac{1}{b} e^{a x} \sin b x-\frac{a}{b}\left[\int e^{a x} \sin b x d x\right] \tag{1}
\end{align*}
$$

$\int e^{a x} \sin b x d x$ is now determined separately using integration by parts again:

Let $u=e^{a x}$ then $d u=a e^{a x} d x$, and let $d v=\sin b x d x$, from which

$$
v=\int \sin b x d x=-\frac{1}{b} \cos b x
$$

Substituting into the integration by parts formula gives:

$$
\begin{aligned}
\int e^{a x} \sin b x d x= & \left(e^{a x}\right)\left(-\frac{1}{b} \cos b x\right) \\
& -\int\left(-\frac{1}{b} \cos b x\right)\left(a e^{a x} d x\right) \\
= & -\frac{1}{b} e^{a x} \cos b x
\end{aligned}
$$

$$
+\frac{a}{b} \int e^{a x} \cos b x d x
$$

Substituting this result into equation (1) gives:

$$
\left.\begin{array}{rl}
\int e^{a x} \cos b x d x= & \frac{1}{b} e^{a x} \sin b x
\end{array}-\frac{a}{b}\left[-\frac{1}{b} e^{a x} \cos b x\right] \text { (} \frac{a}{b} \int e^{a x} \cos b x d x\right] .
$$

The integral on the far right of this equation is the same as the integral on the left hand side and thus they may be combined.

$$
\begin{aligned}
\int e^{a x} \cos b x d x+ & \frac{a^{2}}{b^{2}} \int e^{a x} \cos b x d x \\
& =\frac{1}{b} e^{a x} \sin b x+\frac{a}{b^{2}} e^{a x} \cos b x
\end{aligned}
$$

i.e. $\left(1+\frac{a^{2}}{b^{2}}\right) \int e^{a x} \cos b x d x$

$$
=\frac{1}{b} e^{a x} \sin b x+\frac{a}{b^{2}} e^{a x} \cos b x
$$

i.e. $\left(\frac{b^{2}+a^{2}}{b^{2}}\right) \int e^{a x} \cos b x d x$

$$
=\frac{e^{a x}}{b^{2}}(b \sin b x+a \cos b x)
$$

Hence $\int e^{a x} \cos b x d x$

$$
\begin{aligned}
& =\left(\frac{b^{2}}{b^{2}+a^{2}}\right)\left(\frac{e^{a x}}{b^{2}}\right)(b \sin b x+a \cos b x) \\
& =\frac{\boldsymbol{e}^{\boldsymbol{a x}}}{\boldsymbol{a}^{\mathbf{2}}+\boldsymbol{b}^{\mathbf{2}}}(\boldsymbol{b} \sin \boldsymbol{b} \boldsymbol{x}+\boldsymbol{a} \cos \boldsymbol{b} \boldsymbol{x})+\boldsymbol{c}
\end{aligned}
$$

Using a similar method to above, that is, integrating by parts twice, the following result may be proved:

$$
\begin{align*}
& \int e^{a x} \sin b x d x \\
& \qquad=\frac{e^{a x}}{a^{2}+b^{2}}(a \sin b x-b \cos b x)+c \tag{2}
\end{align*}
$$

Problem 10. Evaluate: $\int_{0}^{\frac{\pi}{4}} e^{t} \sin 2 t d t$, correct to 4 decimal places

Comparing $\int e^{t} \sin 2 t d t$ with $\int e^{a x} \sin b x d x$ shows that $x=t, a=1$ and $b=2$.
Hence, substituting into equation (2) gives:

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{4}} e^{t} \sin 2 t d t \\
& = \\
& =\left[\frac{e^{t}}{1^{2}+2^{2}}(1 \sin 2 t-2 \cos 2 t)\right]_{0}^{\frac{\pi}{4}} \\
& =
\end{aligned}
$$

Exercise 13. Integration by parts

