Module 1 - Differentiation Methods

A. Gradient of a Curve

If a tangent is drawn at a point P on a curve, then the gradient of this tangent is said to be the gradient of the curve at P. In Fig. 1, the gradient of the curve at P is equal to the gradient of the tangent $P Q$.

Figure 1
For the curve shown in Fig. 2, let the points A and B have co-ordinates $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, respectively. In functional notation, $y_{1}=f\left(x_{1}\right)$ and $y_{2}=f\left(x_{2}\right)$ as shown.

Figure 2

The gradient of the chord $A B$

$$
=\frac{B C}{A C}=\frac{B D-C D}{E D}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{\left(x_{2}-x_{1}\right)}
$$

For the curve $f(x)=x^{2}$ shown in Fig. 3.

Figure 3
(i) the gradient of chord $A B$

$$
=\frac{f(3)-f(1)}{3-1}=\frac{9-1}{2}=\mathbf{4}
$$

(ii) the gradient of chord $A C$

$$
=\frac{f(2)-f(1)}{2-1}=\frac{4-1}{1}=\mathbf{3}
$$

(iii) the gradient of chord $A D$

$$
=\frac{f(1.5)-f(1)}{1.5-1}=\frac{2.25-1}{0.5}=\mathbf{2 . 5}
$$

(iv) if E is the point on the curve $(1.1, f(1.1))$ then the gradient of chord $A E$

$$
=\frac{f(1.1)-f(1)}{1.1-1}=\frac{1.21-1}{0.1}=\mathbf{2 . 1}
$$

(v) if F is the point on the curve $(1.01, f(1.01))$ then the gradient of chord $A F$

$$
=\frac{f(1.01)-f(1)}{1.01-1}=\frac{1.0201-1}{0.01}=\mathbf{2 . 0 1}
$$

Thus as point B moves closer and closer to point A the gradient of the chord approaches nearer and nearer to the value 2 . This is called the limiting value of the gradient of the chord $A B$ and when B coincides with A the chord becomes the tangent to the curve.

B. Differentiation from first principles

In Fig. 4, A and B are two points very close together on a curve, δx (delta x) and δy (delta y) representing small increments in the x and y directions, respectively.

Figure 4

Gradient of chord $A B=\frac{\delta y}{\delta x}$; however, $\delta y=f(x+\delta x)-f(x)$.

Hence $\frac{\delta y}{\delta x}=\frac{f(x+\delta x)-f(x)}{\delta x}$.
As δx approaches zero, $\frac{\delta y}{\delta x}$ approaches a limiting value and the gradient of the chord approaches the gradient of the tangent at A.

When determining the gradient of a tangent to a curve there are two notations used. The gradient of
the curve at A in Fig. 4 can either be written as

$$
\operatorname{limit}_{\delta x \rightarrow 0} \frac{\delta y}{\delta x} \text { or } \operatorname{limit}_{\delta x \rightarrow 0}\left\{\frac{f(x+\delta x)-f(x)}{\delta x}\right\}
$$

In Leibniz notation, $\frac{\mathrm{d} y}{\mathrm{~d} x}=\operatorname{limit}_{\delta x \rightarrow 0} \frac{\delta y}{\delta x}$

In functional notation,

$$
f^{\prime}(x)=\operatorname{limit}_{\delta x \rightarrow 0}\left\{\frac{f(x+\delta x)-f(x)}{\delta x}\right\}
$$

$\frac{\mathrm{d} y}{\mathrm{~d} x}$ is the same as $f^{\prime}(x)$ and is called the differential coefficient or the derivative. The process of finding the differential coefficient is called differentiation.

Problem 1. Differentiate from first principle $f(x)=x^{2}$ and determine the value of the gradient of the curve at $x=2$.

To 'differentiate from first principles' means 'to find $f^{\prime}(x)$ ' by using the expression

$$
\begin{aligned}
f^{\prime}(x) & =\operatorname{limit}_{\delta x \rightarrow 0}\left\{\frac{f(x+\delta x)-f(x)}{\delta x}\right\} \\
f(x) & =x^{2}
\end{aligned}
$$

Substituting $(x+\delta x)$ for x gives $f(x+\delta x)=(x+\delta x)^{2}=x^{2}+2 x \delta x+\delta x^{2}$, hence

$$
\begin{aligned}
f^{\prime}(x) & =\operatorname{limit}_{\delta x \rightarrow 0}\left\{\frac{\left(x^{2}+2 x \delta x+\delta x^{2}\right)-\left(x^{2}\right)}{\delta x}\right\} \\
& =\operatorname{limit}_{\delta x \rightarrow 0}\left\{\frac{\left(2 x \delta x+\delta x^{2}\right)}{\delta x}\right\} \\
& =\operatorname{limit}_{\delta x \rightarrow 0}[2 x+\delta x]
\end{aligned}
$$

As $\delta x \rightarrow 0,[2 x+\delta x] \rightarrow[2 x+0]$. Thus $\boldsymbol{f}^{\prime}(\boldsymbol{x})=\mathbf{2 x}$, i.e. the differential coefficient of x^{2} is $2 x$. At $x=2$, the gradient of the curve, $f^{\prime}(x)=2(2)=4$.

C. Differentiation of common functions

From differentiation by first principles of a number of examples such as in Problem 1 above, a general rule for differentiating $y=a x^{n}$ emerges, where a and n are constants.
The rule is: if $y=a x^{n}$ then $\frac{\mathrm{d} y}{\mathrm{~d} x}=a n x^{n-1}$
(or, if $f(x)=a x^{n}$ then $f^{\prime}(x)=a n x^{n-1}$) and is true for all real values of a and n.

For example, if $y=4 x^{3}$ then $a=4$ and $n=3$, and

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=a n x^{n-1}=(4)(3) x^{3-1}=12 x^{2}
$$

If $y=a x^{n}$ and $n=0$ then $y=a x^{0}$ and
$\frac{\mathrm{d} y}{\mathrm{~d} x}=(a)(0) x^{0-1}=0$,

i.e. the differential coefficient of a constant is zero.

Figure 5(a) shows a graph of $y=\sin x$. The gradient is continually changing as the curve moves from 0 to A to B to C to D. The gradient, given by $\frac{\mathrm{d} y}{\mathrm{~d} x}$, may be plotted in a corresponding position below $y=\sin x$, as shown in Fig. 5(b).

Figure 5
(i) At 0 , the gradient is positive and is at its steepest. Hence 0^{\prime} is a maximum positive value.
(ii) Between 0 and A the gradient is positive but is decreasing in value until at A the gradient is zero, shown as A^{\prime}.
(iii) Between A and B the gradient is negative but is increasing in value until at B the gradient is at its steepest negative value. Hence B^{\prime} is a maximum negative value.
(iv) If the gradient of $y=\sin x$ is further investigated between B and D then the resulting graph of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is seen to be a cosine wave. Hence the rate of change of $\sin x$ is $\cos x$,
i.e. if $y=\sin x$ then $\frac{d y}{d x}=\cos x$

By a similar construction to that shown in Fig. 5 it may be shown that:

$$
\text { if } y=\sin a x \text { then } \frac{\mathrm{d} y}{\mathrm{~d} x}=a \cos a x
$$

If graphs of $y=\cos x, y=\mathrm{e}^{x}$ and $y=\ln x$ are plotted and their gradients investigated, their differential coefficients may be determined in a similar manner to that shown for $y=\sin x$. The rate of change of a function is a measure of the derivative.

The standard derivatives summarized below may be proved theoretically and are true for all real values of x

y or $f(x)$	$\frac{\mathrm{d} y}{\mathrm{~d} x}$ or $f^{\prime}(x)$
$a x^{n}$	$a n x^{n-1}$
$\sin a x$	$a \cos a x$
$\cos a x$	$-a \sin a x$
$\mathrm{e}^{a x}$	$a \mathrm{e}^{a x}$
$\ln a x$	$\frac{1}{x}$

The differential coefficient of a sum or difference is the sum or difference of the differential coefficients of the separate terms.

Thus, if $f(x)=p(x)+q(x)-r(x)$, (where f, p, q and r are functions),
then $\quad f^{\prime}(x)=p^{\prime}(x)+q^{\prime}(x)-r^{\prime}(x)$
Differentiation of common functions is demonstrated in the following worked problems.

Problem 2. Find the differential coefficients of

$$
\text { (a) } y=12 x^{3} \text { (b) } y=\frac{12}{x^{3}} \text {. }
$$

If $y=a x^{n}$ then $\frac{\mathrm{d} y}{\mathrm{~d} x}=a n x^{n-1}$
(a) Since $y=12 x^{3}, \quad a=12$ and $n=3$ thus $\frac{\mathrm{d} y}{\mathrm{~d} x}=(12)(3) x^{3-1}=\mathbf{3 6} \boldsymbol{x}^{\mathbf{2}}$
(b) $y=\frac{12}{x^{3}}$ is rewritten in the standard $a x^{n}$ form as $y=12 x^{-3}$ and in the general rule $a=12$ and $n=-3$.
Thus $\frac{\mathrm{d} y}{\mathrm{~d} x}=(12)(-3) x^{-3-1}=-36 x^{-4}=-\frac{\mathbf{3 6}}{\boldsymbol{x}^{\mathbf{4}}}$

Problem 3. Differentiate (a) $y=6$ (b) $y=6 x$.
(a) $y=6$ may be written as $y=6 x^{0}$, i.e. in the general rule $a=6$ and $n=0$.

Hence $\frac{\mathrm{d} y}{\mathrm{~d} x}=(6)(0) x^{0-1}=\mathbf{0}$
In general, the differential coefficient of a constant is always zero.
(b) Since $y=6 x$, in the general rule $a=6$ and $n=1$.

Hence $\frac{\mathrm{d} y}{\mathrm{~d} x}=(6)(1) x^{1-1}=6 x^{0}=\mathbf{6}$
In general, the differential coefficient of $k x$, where k is a constant, is always k.

Problem 4. Find the derivatives of
(a) $y=3 \sqrt{x}$
(b) $y=\frac{5}{\sqrt[3]{x^{4}}}$.
(a) $y=3 \sqrt{x}$ is rewritten in the standard differential form as $y=3 x^{\frac{1}{2}}$.
In the general rule, $a=3$ and $n=\frac{1}{2}$
Thus $\frac{\mathrm{d} y}{\mathrm{~d} x}=(3)\left(\frac{1}{2}\right) x^{\frac{1}{2}-1}=\frac{3}{2} x^{-\frac{1}{2}}$

$$
=\frac{3}{2 x^{\frac{1}{2}}}=\frac{\mathbf{3}}{\mathbf{2} \sqrt{\boldsymbol{x}}}
$$

(b) $y=\frac{5}{\sqrt[3]{x^{4}}}=\frac{5}{x^{\frac{4}{3}}}=5 x^{-\frac{4}{3}}$ in the standard differential form.
In the general rule, $a=5$ and $n=-\frac{4}{3}$

$$
\text { Thus } \begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =(5)\left(-\frac{4}{3}\right) x^{-\frac{4}{3}-1}=\frac{-20}{3} x^{-\frac{7}{3}} \\
& =\frac{-20}{3 x^{\frac{7}{3}}}=\frac{\mathbf{- 2 0}}{\mathbf{3} \sqrt[3]{\boldsymbol{x}^{7}}}
\end{aligned}
$$

Problem 5. Differentiate, with respect to x, $y=5 x^{4}+4 x-\frac{1}{2 x^{2}}+\frac{1}{\sqrt{x}}-3$.

$$
\begin{aligned}
& y=5 x^{4}+4 x-\frac{1}{2 x^{2}}+\frac{1}{\sqrt{x}}-3 \text { is rewritten as } \\
& y=5 x^{4}+4 x-\frac{1}{2} x^{-2}+x^{-\frac{1}{2}}-3
\end{aligned}
$$

When differentiating a sum, each term is differentiated in turn.
Thus $\frac{\mathrm{d} y}{\mathrm{~d} x}=(5)(4) x^{4-1}+(4)(1) x^{1-1}-\frac{1}{2}(-2) x^{-2-1}$

$$
+(1)\left(-\frac{1}{2}\right) x^{-\frac{1}{2}-1}-0
$$

$$
=20 x^{3}+4+x^{-3}-\frac{1}{2} x^{-\frac{3}{2}}
$$

i.e. $\frac{d y}{d x}=20 x^{3}+4+\frac{1}{x^{3}}-\frac{1}{2 \sqrt{x^{3}}}$

Problem 6. Find the differential coefficients of (a) $y=3 \sin 4 x$ (b) $f(t)=2 \cos 3 t$ with respect to the variable.
(a) When $y=3 \sin 4 x$ then $\frac{\mathrm{d} y}{\mathrm{~d} x}=(3)(4 \cos 4 x)$

$$
=12 \cos 4 x
$$

(b) When $f(t)=2 \cos 3 t$ then

$$
f^{\prime}(t)=(2)(-3 \sin 3 t)=-\mathbf{6} \sin 3 t
$$

Problem 7. Determine the derivatives of

$$
\text { (a) } y=3 \mathrm{e}^{5 x} \text { (b) } f(\theta)=\frac{2}{\mathrm{e}^{3 \theta}} \text { (c) } y=6 \ln 2 x \text {. }
$$

(a) When $y=3 \mathrm{e}^{5 x}$ then $\frac{\mathrm{d} y}{\mathrm{~d} x}=(3)(5) \mathrm{e}^{5 x}=\mathbf{1 5}^{5 x}$
(b) $f(\theta)=\frac{2}{\mathrm{e}^{3 \theta}}=2 \mathrm{e}^{-3 \theta}$, thus

$$
f^{\prime}(\theta)=(2)(-3) \mathrm{e}^{-30}=-6 \mathrm{e}^{-3 \theta}=\frac{\mathbf{- 6}}{\mathrm{e}^{3 \theta}}
$$

(c) When $y=6 \ln 2 x$ then $\frac{\mathrm{d} y}{\mathrm{~d} x}=6\left(\frac{1}{x}\right)=\frac{6}{\boldsymbol{x}}$

Problem 8. Find the gradient of the curve $y=3 x^{4}-2 x^{2}+5 x-2$ at the points $(0,-2)$ and (1, 4).

The gradient of a curve at a given point is given by the corresponding value of the derivative. Thus, since $y=3 x^{4}-2 x^{2}+5 x-2$.
then the gradient $=\frac{\mathrm{d} y}{\mathrm{~d} x}=12 x^{3}-4 x+5$.
At the point $(0,-2), x=0$.
Thus the gradient $=12(0)^{3}-4(0)+5=5$.
At the point $(1,4), x=1$.
Thus the gradient $=12(1)^{3}-4(1)+5=\mathbf{1 3}$.

Problem 9. Determine the co-ordinates of the point on the graph $y=3 x^{2}-7 x+2$ where the gradient is -1 .

The gradient of the curve is given by the derivative.
When $y=3 x^{2}-7 x+2$ then $\frac{\mathrm{d} y}{\mathrm{~d} x}=6 x-7$
Since the gradient is -1 then $6 x-7=-1$, from which, $x=1$

When $x=1, y=3(1)^{2}-7(1)+2=-2$
Hence the gradient is $\mathbf{- 1}$ at the point $(1,-2)$.

Exercise 1. Differentiation of common functions

D. Differentiation of a Product

When $y=u v$, and u and v are both functions of x, then $\frac{\mathrm{d} y}{\mathrm{~d} x}=u \frac{\mathrm{~d} v}{\mathrm{~d} x}+v \frac{\mathrm{~d} u}{\mathrm{~d} x}$

This is known as the product rule.

Problem 10. Find the differential coefficient of $y=3 x^{2} \sin 2 x$.
$3 x^{2} \sin 2 x$ is a product of two terms $3 x^{2}$ and $\sin 2 x$ Let $u=3 x^{2}$ and $v=\sin 2 x$
Using the product rule:

$$
\begin{array}{ccccc}
\frac{\mathrm{d} y}{\mathrm{~d} x}= & u & \frac{\mathrm{~d} v}{\mathrm{~d} x} & + & v \\
& \downarrow & \downarrow & & \frac{\mathrm{~d} u}{\mathrm{~d} x} \\
& \downarrow
\end{array}
$$

gives: $\frac{\mathrm{d} y}{\mathrm{~d} x}=\left(3 x^{2}\right)(2 \cos 2 x)+(\sin 2 x)(6 x)$
i.e. $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=6 x^{2} \cos 2 x+6 x \sin 2 x$

$$
=6 x(x \cos 2 x+\sin 2 x)
$$

Note that the differential coefficient of a product is not obtained by merely differentiating each term and multiplying the two answers together. The product rule formula must be used when differentiating products.

Problem 11. Find the rate of change of y with respect to x given $y=3 \sqrt{x} \ln 2 x$.

The rate of change of y with respect to x is given by $\frac{d y}{d x}$
$y=3 \sqrt{x} \ln 2 x=3 x^{\frac{1}{2}} \ln 2 x$, which is a product.
Let $u=3 x^{\frac{1}{2}}$ and $v=\ln 2 x$
Then $\frac{\mathrm{d} y}{\mathrm{~d} x}=u \frac{\mathrm{~d} v}{\mathrm{~d} x}+v \quad \frac{\mathrm{~d} u}{\mathrm{~d} x}$

$$
=\left(3 x^{\downarrow} \frac{\downarrow}{\frac{1}{2}}\right)\left(\frac{1}{x}\right)+(\ln 2 x)\left[3\left(\frac{1}{2}\right)^{\downarrow} x^{\frac{1}{2}-1}\right]
$$

$$
=3 x^{\frac{1}{2}-1}+(\ln 2 x)\left(\frac{3}{2}\right) x^{-\frac{1}{2}}
$$

$$
=3 x^{-\frac{1}{2}}\left(1+\frac{1}{2} \ln 2 x\right)
$$

i.e. $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3}{\sqrt{x}}\left(1+\frac{1}{2} \ln 2 x\right)$

Problem 12. Differentiate $y=x^{3} \cos 3 x \ln x$.

Let $u=x^{3} \cos 3 x$ (i.e. a product) and $v=\ln x$
Then $\frac{\mathrm{d} y}{\mathrm{~d} x}=u \frac{\mathrm{~d} v}{\mathrm{~d} x}+v \frac{\mathrm{~d} u}{\mathrm{~d} x}$
where $\frac{\mathrm{d} u}{\mathrm{~d} x}=\left(x^{3}\right)(-3 \sin 3 x)+(\cos 3 x)\left(3 x^{2}\right)$
and $\quad \frac{\mathrm{d} v}{\mathrm{~d} x}=\frac{1}{x}$
Hence $\frac{\mathrm{d} y}{\mathrm{~d} x}=\left(x^{3} \cos 3 x\right)\left(\frac{1}{x}\right)+(\ln x)\left[-3 x^{3} \sin 3 x\right.$ $\left.+3 x^{2} \cos 3 x\right]$
$=x^{2} \cos 3 x+3 x^{2} \ln x(\cos 3 x-x \sin 3 x)$
i.e. $\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2}\{\cos 3 x+3 \ln x(\cos 3 x-x \sin 3 x)\}$

Problem 13. Determine the rate of change of voltage, given $v=5 t \sin 2 t$ volts when $t=0.2 \mathrm{~s}$.

Rate of change of voltage $=\frac{\mathrm{d} v}{\mathrm{~d} t}$

$$
\begin{aligned}
& =(5 t)(2 \cos 2 t)+(\sin 2 t)(5) \\
& =10 t \cos 2 t+5 \sin 2 t
\end{aligned}
$$

When $t=0.2, \frac{\mathrm{~d} v}{\mathrm{~d} t}=10(0.2) \cos 2(0.2)$
$=2 \cos 0.4+5 \sin 0.4$ (where $\cos 0.4$ means the cosine of 0.4 radians)

Hence $\frac{\mathrm{d} v}{\mathrm{~d} t}=2(0.92106)+5(0.38942)$

$$
=1.8421+1.9471=3.7892
$$

i.e., the rate of change of voltage when $t=0.2 \mathrm{~s}$ is

 3.79 volts/s, correct to 3 significant figures.
Exercise 2. Differentiation of a product

E. Differentiation of a Quotient

When $y=\frac{u}{v}$, and u and v are both functions of x
then

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{v \frac{\mathrm{~d} u}{\mathrm{~d} x}-u \frac{\mathrm{~d} v}{\mathrm{~d} x}}{v^{2}}
$$

This is known as the quotient rule.

Problem 14. Find the differential coefficient of $y=\frac{4 \sin 5 x}{5 x^{4}}$.
$\frac{4 \sin 5 x}{5 x^{4}}$ is a quotient. Let $u=4 \sin 5 x$ and $v=5 x^{4}$
(Note that v is always the denominator and u the numerator)

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{v \frac{\mathrm{~d} u}{\mathrm{~d} x}-u \frac{\mathrm{~d} v}{\mathrm{~d} x}}{v^{2}}
$$

where $\frac{\mathrm{d} u}{\mathrm{~d} x}=(4)(5) \cos 5 x=20 \cos 5 x$
and

$$
\frac{\mathrm{d} v}{\mathrm{~d} x}=(5)(4) x^{3}=20 x^{3}
$$

Hence $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\left(5 x^{4}\right)(20 \cos 5 x)-(4 \sin 5 x)\left(20 x^{3}\right)}{\left(5 x^{4}\right)^{2}}$
$=\frac{100 x^{4} \cos 5 x-80 x^{3} \sin 5 x}{25 x^{8}}$
$=\frac{20 x^{3}[5 x \cos 5 x-4 \sin 5 x]}{25 x^{8}}$
i.e. $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4}{5 x^{5}}(5 x \cos 5 x-4 \sin 5 x)$

Note that the differential coefficient is not obtained by merely differentiating each term in turn and then dividing the numerator by the denominator. The quotient formula must be used when differentiating quotients.

Problem 15. Determine the differential coefficient of $y=\tan a x$.
$y=\tan a x=\frac{\sin a x}{\cos a x}$. Differentiation of $\tan a x$ is thus treated as a quotient with $u=\sin a x$ and $v=\cos a x$

$$
\begin{aligned}
& \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{v \frac{\mathrm{~d} u}{\mathrm{~d} x}-u \frac{\mathrm{~d} v}{\mathrm{~d} x}}{v^{2}} \\
&=\frac{(\cos a x)(a \cos a x)-(\sin a x)(-a \sin a x)}{(\cos a x)^{2}} \\
&=\frac{a \cos ^{2} a x+a \sin ^{2} a x}{(\cos a x)^{2}}=\frac{a\left(\cos ^{2} a x+\sin ^{2} a x\right)}{\cos ^{2} a x} \\
&=\frac{a}{\cos ^{2} a x}, \text { since } \cos ^{2} a x+\sin ^{2} a x=1 \\
& \quad(\text { see Chapter } 16)
\end{aligned}
$$

Hence $\frac{\mathbf{d} \boldsymbol{y}}{\mathbf{d} \boldsymbol{x}}=\boldsymbol{a} \sec ^{2} a \boldsymbol{a} \quad$ since $\quad \sec ^{2} a x=\frac{1}{\cos ^{2} a x}$

Problem 16. Find the derivative of $y=\sec a x$.
$y=\sec a x=\frac{1}{\cos a x}$ (i.e. a quotient). Let $u=1$ and
$v=\cos a x$

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{v \frac{\mathrm{~d} u}{\mathrm{~d} x}-u \frac{\mathrm{~d} v}{\mathrm{~d} x}}{v^{2}}
$$

$$
=\frac{(\cos a x)(0)-(1)(-a \sin a x)}{(\cos a x)^{2}}
$$

$$
=\frac{a \sin a x}{\cos ^{2} a x}=a\left(\frac{1}{\cos a x}\right)\left(\frac{\sin a x}{\cos a x}\right)
$$

i.e. $\frac{\mathrm{d} y}{\mathrm{~d} x}=a \sec a x \tan a x$

Problem 17. Differentiate $y=\frac{\mathrm{t}^{2 t}}{2 \cos t}$

The function $\frac{t \mathrm{e}^{2 t}}{2 \cos t}$ is a quotient, whose numerator is a product.
Let $u=t \mathrm{e}^{2 t}$ and $v=2 \cos t$ then
$\frac{\mathrm{d} u}{\mathrm{~d} t}=(t)\left(2 \mathrm{e}^{2 t}\right)+\left(\mathrm{e}^{2 t}\right)(1)$ and $\frac{\mathrm{d} v}{\mathrm{~d} t}=-2 \sin t$
Hence $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{v \frac{\mathrm{~d} u}{\mathrm{~d} x}-u \frac{\mathrm{~d} v}{\mathrm{~d} x}}{v^{2}}$

$$
\begin{aligned}
& =\frac{(2 \cos t)\left[2 t \mathrm{e}^{2 t}+\mathrm{e}^{2 t}\right]-\left(t \mathrm{e}^{2 t}\right)(-2 \sin t)}{(2 \cos t)^{2}} \\
& =\frac{4 t \mathrm{e}^{2 t} \cos t+2 \mathrm{e}^{2 t} \cos t+2 t \mathrm{e}^{2 t} \sin t}{4 \cos ^{2} t} \\
& =\frac{2 \mathrm{e}^{2 t}[2 t \cos t+\cos t+t \sin t]}{4 \cos ^{2} t}
\end{aligned}
$$

i.e. $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{e}^{2 t}}{2 \cos ^{2} t}(2 t \cos t+\cos t+t \sin t)$

Problem 18. Determine the gradient of the curve $y=\frac{5 x}{2 x^{2}+4}$ at the point $\left(\sqrt{3}, \frac{\sqrt{3}}{2}\right)$.

Let $y=5 x$ and $v=2 x^{2}+4$

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{v \frac{\mathrm{~d} u}{\mathrm{~d} x}-u \frac{\mathrm{~d} v}{\mathrm{~d} x}}{v^{2}}=\frac{\left(2 x^{2}+4\right)(5)-(5 x)(4 x)}{\left(2 x^{2}+4\right)^{2}} \\
& =\frac{10 x^{2}+20-20 x^{2}}{\left(2 x^{2}+4\right)^{2}}=\frac{20-10 x^{2}}{\left(2 x^{2}+4\right)^{2}}
\end{aligned}
$$

At the point $\left(\sqrt{3}, \frac{\sqrt{3}}{2}\right), x=\sqrt{3}$,
hence the gradient $=\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{20-10(\sqrt{3})^{2}}{\left[2(\sqrt{3})^{2}+4\right]^{2}}$

$$
=\frac{20-30}{100}=-\frac{\mathbf{1}}{\mathbf{1 0}}
$$

Exercise 3. Differentiation of a quotient.

F. Function of a Function

It is often easier to make a substitution before differentiating.

If y is a function of x then

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x}
$$

This is known as the 'function of a function' rule (or sometimes the chain rule).

For example, if $y=(3 x-1)^{9}$ then, by making the substitution $u=(3 x-1), y=u^{9}$, which is of the 'standard' form.

Hence $\frac{\mathrm{d} y}{\mathrm{~d} u}=9 u^{8}$ and $\frac{\mathrm{d} u}{\mathrm{~d} x}=3$
Then $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x}=\left(9 u^{8}\right)(3)=27 u^{8}$
Rewriting u as $(3 x-1)$ gives: $\frac{\mathbf{d} \boldsymbol{y}}{\mathbf{d} \boldsymbol{x}}=\mathbf{2 7}(\mathbf{3 x}-1)^{\mathbf{8}}$
Since y is a function of u, and u is a function of x, then y is a function of a function of x.

Problem 19. Differentiate $y=3 \cos \left(5 x^{2}+2\right)$.

Let $u=5 x^{2}+2$ then $y=3 \cos u$
Hence $\frac{\mathrm{d} u}{\mathrm{~d} x}=10 x$ and $\frac{\mathrm{d} y}{\mathrm{~d} u}=-3 \sin u$.
Using the function of a function rule,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x}=(-3 \sin u)(10 x)=-30 x \sin u
$$

Rewriting u as $5 x^{2}+2$ gives:

$$
\frac{d y}{d x}=-30 x \sin \left(5 x^{2}+2\right)
$$

Problem 20. Find the derivative of $y=\left(4 t^{3}-3 t\right)^{6}$.

Let $u=4 t^{3}-3 t$, then $y=u^{6}$
Hence $\frac{\mathrm{d} u}{\mathrm{~d} t}=12 t^{2}-3$ and $\frac{\mathrm{d} y}{\mathrm{~d} u}=6 u^{5}$

Using the function of a function rule,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x}=\left(6 u^{5}\right)\left(12 t^{2}-3\right)
$$

Rewriting u as $\left(4 t^{3}-3 t\right)$ gives:

$$
\begin{aligned}
\frac{\mathbf{d} \boldsymbol{y}}{\mathbf{d} t} & =6\left(4 t^{3}-3 t\right)^{5}\left(12 t^{2}-3\right) \\
& =\mathbf{1 8}\left(\mathbf{4} t^{\mathbf{2}} \mathbf{- 1}\right)\left(\mathbf{4} t^{\mathbf{3}}-\mathbf{3} t\right)^{\mathbf{5}}
\end{aligned}
$$

Problem 21. Determine the differential coefficient of $y=\sqrt{\left(3 x^{2}+4 x-1\right)}$.
$y=\sqrt{\left(3 x^{2}+4 x-1\right)}=\left(3 x^{2}+4 x-1\right)^{\frac{1}{2}}$
Let $u=3 x^{2}+4 x-1$ then $y=u^{\frac{1}{2}}$
Hence $\frac{\mathrm{d} u}{\mathrm{~d} x}=6 x+4$ and $\frac{\mathrm{d} y}{\mathrm{~d} u}=\frac{1}{2} u^{-\frac{1}{2}}=\frac{1}{2 \sqrt{u}}$
Using the function of a function rule,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x}=\left(\frac{1}{2 \sqrt{u}}\right)(6 x+4)=\frac{3 x+2}{\sqrt{u}}
$$

i.e. $\frac{d y}{d x}=\frac{3 x+2}{\sqrt{\left(3 x^{2}+4 x-1\right)}}$

Problem 22. Differentiate $y=3 \tan ^{4} 3 x$.

Let $u=\tan 3 x$ then $y=3 u^{4}$
Hence $\frac{\mathrm{d} u}{\mathrm{~d} x}=3 \sec ^{2} 3 x$, (from Problem 15), and

$$
\frac{\mathrm{d} y}{\mathrm{~d} u}=12 u^{3}
$$

Then $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x}=\left(12 u^{3}\right)\left(3 \sec ^{2} 3 x\right)$

$$
=12(\tan 3 x)^{3}\left(3 \sec ^{2} 3 x\right)
$$

i.e. $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=36 \tan ^{3} 3 x \sec ^{2} 3 x$

Problem 23. Find the differential coefficient of $y=\frac{2}{\left(2 t^{3}-5\right)^{4}}$
$y=\frac{2}{\left(2 t^{3}-5\right)^{4}}=2\left(2 t^{3}-5\right)^{-4}$. Let $u=\left(2 t^{3}-5\right)$,
then $y=2 u^{-4}$
Hence $\quad \frac{\mathrm{d} u}{\mathrm{~d} t}=6 t^{2}$ and $\frac{\mathrm{d} y}{\mathrm{~d} u}=-8 u^{-5}=\frac{-8}{u^{5}}$
Then $\quad \frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} t}=\left(\frac{-8}{u^{5}}\right)\left(6 t^{2}\right)$

$$
=\frac{-48 t^{2}}{\left(2 t^{3}-5\right)^{5}}
$$

Exercise 4. Function of a function

G. Successive Differentiation

When a function $y=f(x)$ is differentiated with respect to x the differential coefficient is written as $\frac{\mathrm{d} y}{\mathrm{~d} x}$ or $f^{\prime}(x)$. If the expression is differentiated again, the second differential coefficient is obtained and is written as $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ (pronounced dee two y by dee x squared) or $f^{\prime \prime}(x)$ ($\operatorname{pronounced~} f$ double-dash x).

By successive differentiation further higher derivatives such as $\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}$ and $\frac{\mathrm{d}^{4} y}{\mathrm{~d} x^{4}}$ may be obtained.
Thus if $y=3 x^{4}, \frac{\mathrm{~d} y}{\mathrm{~d} x}=12 x^{3}, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=36 x^{2}$,
$\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}=72 x, \frac{\mathrm{~d}^{4} y}{\mathrm{~d} x^{4}}=72$ and $\frac{\mathrm{d}^{5} y}{\mathrm{~d} x^{5}}=0$.

Problem 24. If $f(x)=2 x^{5}-4 x^{3}+3 x-5$, find $f^{\prime \prime}(x)$.

$$
\begin{aligned}
f(x) & =2 x^{5}-4 x^{3}+3 x-5 \\
f^{\prime}(x) & =10 x^{4}-12 x^{2}+3 \\
f^{\prime \prime}(\boldsymbol{x}) & =40 x^{3}-24 x=4 x\left(\mathbf{1 0} \boldsymbol{x}^{2}-\mathbf{6}\right)
\end{aligned}
$$

Problem 25. If $y=\cos x-\sin x$, evaluate x, in the range $0 \leq x \leq \frac{\pi}{2}$, when $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ is zero.

Since $y=\cos x-\sin x, \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\sin x-\cos x$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-\cos x+\sin x$.
When $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ is zero, $-\cos x+\sin x=0$, i.e. $\sin x=\cos x$ or $\frac{\sin x}{\cos x}=1$.

Hence $\tan x=1$ and $\boldsymbol{x}=\arctan 1=45^{\circ}$ or $\frac{\boldsymbol{\pi}}{\mathbf{4}}$ rads in the range $0 \leq x \leq \frac{\pi}{2}$

Problem 26. Given $y=2 x \mathrm{e}^{-3 x}$ show that

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+6 \frac{\mathrm{~d} y}{\mathrm{~d} x}+9 y=0
$$

$y=2 x \mathrm{e}^{-3 x}$ (i.e. a product)
Hence $\frac{\mathrm{d} y}{\mathrm{~d} x}=(2 x)\left(-3 \mathrm{e}^{-3 x}\right)+\left(\mathrm{e}^{-3 x}\right)(2)$ $=-6 x \mathrm{e}^{-3 x}+2 \mathrm{e}^{-3 x}$

$$
\begin{aligned}
& \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\left[(-6 x)\left(-3 \mathrm{e}^{-3 x}\right)+\left(\mathrm{e}^{-3 x}\right)(-6)\right] \\
& \quad+\left(-6 \mathrm{e}^{-3 x}\right) \\
&= 18 x \mathrm{e}^{-3 x}-6 \mathrm{e}^{-3 x}-6 \mathrm{e}^{-3 x}
\end{aligned}
$$

i.e. $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=18 x \mathrm{e}^{-3 x}-12 \mathrm{e}^{-3 x}$

Substituting values into $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+6 \frac{\mathrm{~d} y}{\mathrm{~d} x}+9 y$ gives:

$$
\begin{array}{r}
\left(18 x \mathrm{e}^{-3 x}-12 \mathrm{e}^{-3 x}\right)+6\left(-6 x \mathrm{e}^{-3 x}+2 \mathrm{e}^{-3 x}\right) \\
+9\left(2 x \mathrm{e}^{-3 x}\right)=18 x \mathrm{e}^{-3 x}-12 \mathrm{e}^{-3 x}-36 x \mathrm{e}^{-3 x} \\
+12 \mathrm{e}^{-3 x}+18 x \mathrm{e}^{-3 x}=0
\end{array}
$$

Thus when $y=2 x \mathrm{e}^{-3 x}, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+6 \frac{\mathrm{~d} y}{\mathrm{~d} x}+9 y=0$
Problem 27. Evaluate $\frac{\mathrm{d}^{2} y}{\mathrm{~d} \theta^{2}}$ when $\theta=0$ given $y=4 \sec 2 \theta$.
Since $y=4 \sec 2 \theta$,
then $\frac{\mathrm{d} y}{\mathrm{~d} \theta}=(4)(2) \sec 2 \theta \tan 2 \theta$ (from Problem 16)

$$
=8 \sec 2 \theta \tan 2 \theta \text { (i.e. a product) }
$$

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} \theta^{2}}=(8 \sec 2 \theta)\left(2 \sec ^{2} 2 \theta\right)
$$

$$
+(\tan 2 \theta)[(8)(2) \sec 2 \theta \tan 2 \theta]
$$

$$
=16 \sec ^{3} 2 \theta+16 \sec 2 \theta \tan ^{2} 2 \theta
$$

When $\quad \theta=0, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} \theta^{2}}=16 \sec ^{3} 0+16 \sec 0 \tan ^{2} 0$

$$
=16(1)+16(1)(0)=\mathbf{1 6} .
$$

Exercise 5. Successive differentiation

