Module 1 - Differentiation Methods

A. Gradient of a Curve

If a tangent is drawn at a point P on a curve, then the gradient of this tangent is said to be the **gradient of the curve** at *P*. In Fig. 1, the gradient of the curve at *P* is equal to the gradient of the tangent *PQ*.

Figure 1

For the curve shown in Fig. 2, let the points *A* and *B* have co-ordinates (x_1, y_1) and (x_2, y_2) , respectively. In functional notation, $y_1 = f(x_1)$ and $y_2 = f(x_2)$ as shown.

The gradient of the chord AB

$$= \frac{BC}{AC} = \frac{BD - CD}{ED} = \frac{f(x_2) - f(x_1)}{(x_2 - x_1)}$$

For the curve $f(x) = x^2$ shown in Fig. 3.

Figure 3

(i) the gradient of chord AB

$$=\frac{f(3)-f(1)}{3-1}=\frac{9-1}{2}=4$$

(ii) the gradient of chord AC

$$=\frac{f(2)-f(1)}{2-1}=\frac{4-1}{1}=3$$

(iii) the gradient of chord AD

$$=\frac{f(1.5)-f(1)}{1.5-1}=\frac{2.25-1}{0.5}=2.5$$

(iv) if *E* is the point on the curve (1.1, f(1.1)) then the gradient of chord *AE*

$$=\frac{f(1.1)-f(1)}{1.1-1}=\frac{1.21-1}{0.1}=2.1$$

(v) if F is the point on the curve (1.01, f(1.01)) then the gradient of chord AF

$$=\frac{f(1.01)-f(1)}{1.01-1}=\frac{1.0201-1}{0.01}=2.01$$

Thus as point B moves closer and closer to point A the gradient of the chord approaches nearer and nearer to the value **2**. This is called the **limiting value** of the gradient of the chord AB and when B coincides with A the chord becomes the tangent to the curve.

B. Differentiation from first principles

In Fig. 4, A and B are two points very close together on a curve, δx (delta x) and δy (delta y) representing small increments in the x and y directions, respectively.

Gradient of chord
$$AB = \frac{\delta y}{\delta x}$$
; however,
 $\delta y = f(x + \delta x) - f(x)$.
Hence $\frac{\delta y}{\delta x} = \frac{f(x + \delta x) - f(x)}{\delta x}$.

As δx approaches zero, $\frac{\delta y}{\delta x}$ approaches a limiting value and the gradient of the chord approaches the gradient of the tangent at *A*.

When determining the gradient of a tangent to a curve there are two notations used. The gradient of

the curve at A in Fig. 4 can either be written as

$$\lim_{\delta x \to 0} \frac{\delta y}{\delta x} \text{ or } \lim_{\delta x \to 0} \left\{ \frac{f(x + \delta x) - f(x)}{\delta x} \right\}$$

In Leibniz notation, $\frac{dy}{dx} = \lim_{\delta x \to 0} \frac{\delta y}{\delta x}$

In functional notation,

$$f'(x) = \lim_{\delta x \to 0} \left\{ \frac{f(x + \delta x) - f(x)}{\delta x} \right\}$$

 $\frac{dy}{dx}$ is the same as f'(x) and is called the **differential** coefficient or the derivative. The process of finding the differential coefficient is called differentiation.

Problem 1. Differentiate from first principle $f(x) = x^2$ and determine the value of the gradient of the curve at x = 2.

To 'differentiate from first principles' means 'to find f'(x)' by using the expression

$$f'(x) = \lim_{\delta x \to 0} \left\{ \frac{f(x + \delta x) - f(x)}{\delta x} \right\}$$
$$f(x) = x^2$$

Substituting $(x + \delta x)$ for x gives $f(x + \delta x) = (x + \delta x)^2 = x^2 + 2x\delta x + \delta x^2$, hence

$$f'(x) = \lim_{\delta x \to 0} \left\{ \frac{(x^2 + 2x\delta x + \delta x^2) - (x^2)}{\delta x} \right\}$$
$$= \lim_{\delta x \to 0} \left\{ \frac{(2x\delta x + \delta x^2)}{\delta x} \right\}$$
$$= \lim_{\delta x \to 0} [2x + \delta x]$$

As $\delta x \to 0$, $[2x + \delta x] \to [2x + 0]$. Thus f'(x) = 2x, i.e. the differential coefficient of x^2 is 2x. At x = 2, the gradient of the curve, f'(x) = 2(2) = 4.

C. Differentiation of common functions

From differentiation by first principles of a number of examples such as in Problem 1 above, a general rule for differentiating $y = ax^n$ emerges, where *a* and *n* are constants.

The rule is: if
$$y = ax^n$$
 then $\frac{dy}{dx} = anx^{n-1}$

(or, if $f(x) = ax^n$ then $f'(x) = anx^{n-1}$) and is true for all real values of a and n. For example, if $y = 4x^3$ then a = 4 and n = 3, and

$$\frac{\mathrm{d}y}{\mathrm{d}x} = anx^{n-1} = (4)(3)x^{3-1} = 12x^2$$

If $y = ax^n$ and n = 0 then $y = ax^0$ and

$$\frac{\mathrm{d}y}{\mathrm{d}x} = (a)(0)x^{0-1} = 0,$$

i.e. the differential coefficient of a constant is zero.

Figure 5(a) shows a graph of $y = \sin x$. The gradient is continually changing as the curve moves from 0 to A to B to C to D. The gradient, given

by $\frac{dy}{dx}$, may be plotted in a corresponding position below $y = \sin x$, as shown in Fig. 5(b).

Figure 5

- (i) At 0, the gradient is positive and is at its steepest. Hence 0' is a maximum positive value.
- (ii) Between 0 and A the gradient is positive but is decreasing in value until at A the gradient is zero, shown as A'.
- (iii) Between A and B the gradient is negative but is increasing in value until at B the gradient is at its steepest negative value. Hence B' is a maximum negative value.

(iv) If the gradient of $y = \sin x$ is further investigated between B and D then the resulting graph of $\frac{dy}{dx}$ is seen to be a cosine wave. Hence the rate of change of $\sin x$ is $\cos x$,

i.e. if
$$y = \sin x$$
 then $\frac{dy}{dx} = \cos x$

By a similar construction to that shown in Fig. 5 it may be shown that:

if
$$y = \sin ax$$
 then $\frac{dy}{dx} = a \cos ax$

If graphs of $y = \cos x$, $y = e^x$ and $y = \ln x$ are plotted and their gradients investigated, their differential coefficients may be determined in a similar manner to that shown for $y = \sin x$. The rate of change of a function is a measure of the derivative.

The standard derivatives summarized below may be proved theoretically and are true for all real values of x

$y \operatorname{or} f(x)$	$\frac{\mathrm{d}y}{\mathrm{d}x}$ or $f'(x)$
ax^n	anx^{n-1}
sin ax	$a\cos ax$
cos ax	$-a\sin ax$
e ^{ax}	ae^{ax}
ln ax	$\frac{1}{x}$

The differential coefficient of a sum or difference is the sum or difference of the differential coefficients of the separate terms.

Thus, if
$$f(x) = p(x) + q(x) - r(x)$$
,
(where f, p, q and r are functions),

then f'(x) = p'(x) + q'(x) - r'(x)

Differentiation of common functions is demonstrated in the following worked problems.

Problem 2. Find the differential coefficients of
(a)
$$y = 12x^3$$
 (b) $y = \frac{12}{x^3}$.

If
$$y = ax^n$$
 then $\frac{dy}{dx} = anx^{n-1}$

- (a) Since $y = 12x^3$, a = 12 and n = 3 thus $\frac{dy}{dx} = (12)(3)x^{3-1} = 36x^2$
- (b) $y = \frac{12}{x^3}$ is rewritten in the standard ax^n form as $y = 12x^{-3}$ and in the general rule a = 12 and n = -3.

Thus
$$\frac{dy}{dx} = (12)(-3)x^{-3-1} = -36x^{-4} = -\frac{36}{x^4}$$

Problem 3. Differentiate (a) y = 6 (b) y = 6x.

(a) y=6 may be written as $y=6x^0$, i.e. in the general rule a=6 and n=0.

Hence
$$\frac{dy}{dx} = (6)(0)x^{0-1} = 0$$

In general, the differential coefficient of a constant is always zero.

(b) Since y = 6x, in the general rule a = 6 and n = 1.

Hence
$$\frac{dy}{dx} = (6)(1)x^{1-1} = 6x^0 = 6$$

In general, the differential coefficient of kx, where k is a constant, is always k.

Problem 4. Find the derivatives of
(a)
$$y = 3\sqrt{x}$$
 (b) $y = \frac{5}{\sqrt[3]{x^4}}$.

(a) $y = 3\sqrt{x}$ is rewritten in the standard differential form as $y = 3x^{\frac{1}{2}}$.

In the general rule, a = 3 and $n = \frac{1}{2}$

Thus
$$\frac{dy}{dx} = (3)\left(\frac{1}{2}\right)x^{\frac{1}{2}-1} = \frac{3}{2}x^{-\frac{1}{2}}$$
$$= \frac{3}{2x^{\frac{1}{2}}} = \frac{3}{2\sqrt{x}}$$

(b)
$$y = \frac{5}{\sqrt[3]{x^4}} = \frac{5}{x^{\frac{4}{3}}} = 5x^{-\frac{4}{3}}$$
 in the standard differential form.
In the general rule, $a = 5$ and $n = -\frac{4}{3}$

Thus
$$\frac{dy}{dx} = (5)\left(-\frac{4}{3}\right)x^{-\frac{4}{3}-1} = \frac{-20}{3}x^{-\frac{7}{3}}$$
$$= \frac{-20}{3x^{\frac{7}{3}}} = \frac{-20}{3\sqrt[3]{x^7}}$$

Problem 5. Differentiate, with respect to x, $y = 5x^4 + 4x - \frac{1}{2x^2} + \frac{1}{\sqrt{x}} - 3.$

$$y = 5x^{4} + 4x - \frac{1}{2x^{2}} + \frac{1}{\sqrt{x}} - 3$$
 is rewritten as
$$y = 5x^{4} + 4x - \frac{1}{2}x^{-2} + x^{-\frac{1}{2}} - 3$$

When differentiating a sum, each term is differentiated in turn.

Thus
$$\frac{dy}{dx} = (5)(4)x^{4-1} + (4)(1)x^{1-1} - \frac{1}{2}(-2)x^{-2-1}$$

+ $(1)\left(-\frac{1}{2}\right)x^{-\frac{1}{2}-1} - 0$
= $20x^3 + 4 + x^{-3} - \frac{1}{2}x^{-\frac{3}{2}}$
i.e. $\frac{dy}{dx} = 20x^3 + 4 + \frac{1}{x^3} - \frac{1}{2\sqrt{x^3}}$

Problem 6. Find the differential coefficients of (a) $y = 3 \sin 4x$ (b) $f(t) = 2 \cos 3t$ with respect to the variable.

(a) When
$$y = 3 \sin 4x$$
 then $\frac{dy}{dx} = (3)(4 \cos 4x)$
= 12 cos 4x

(b) When $f(t) = 2\cos 3t$ then $f'(t) = (2)(-3\sin 3t) = -6\sin 3t$

Problem 7. Determine the derivatives of
(a)
$$y = 3e^{5x}$$
 (b) $f(\theta) = \frac{2}{e^{3\theta}}$ (c) $y = 6 \ln 2x$.

(a) When
$$y = 3e^{5x}$$
 then $\frac{dy}{dx} = (3)(5)e^{5x} = 15e^{5x}$
(b) $f(\theta) = \frac{2}{e^{3\theta}} = 2e^{-3\theta}$, thus
 $f'(\theta) = (2)(-3)e^{-3\theta} = -6e^{-3\theta} = \frac{-6}{e^{3\theta}}$

(c) When
$$y = 6 \ln 2x$$
 then $\frac{dy}{dx} = 6\left(\frac{1}{x}\right) = \frac{6}{x}$

Problem 8. Find the gradient of the curve $y = 3x^4 - 2x^2 + 5x - 2$ at the points (0, -2) and (1, 4).

The gradient of a curve at a given point is given by the corresponding value of the derivative. Thus, since $y = 3x^4 - 2x^2 + 5x - 2$.

then the gradient = $\frac{dy}{dx} = 12x^3 - 4x + 5$. At the point (0, -2), x = 0.

Thus the gradient = $12(0)^3 - 4(0) + 5 = 5$.

At the point (1, 4), x = 1. Thus the gradient = $12(1)^3 - 4(1) + 5 = 13$.

Problem 9. Determine the co-ordinates of the point on the graph $y = 3x^2 - 7x + 2$ where the gradient is -1.

The gradient of the curve is given by the derivative.

When $y = 3x^2 - 7x + 2$ then $\frac{dy}{dx} = 6x - 7$ Since the gradient is -1 then 6x - 7 = -1, from which, x = 1

When x = 1, $y = 3(1)^2 - 7(1) + 2 = -2$

Hence the gradient is -1 at the point (1, -2).

Exercise 1. Differentiation of common functions

D. Differentiation of a Product

When y = uv, and u and v are both functions of x,

then
$$\frac{\mathrm{d}y}{\mathrm{d}x} = u\frac{\mathrm{d}v}{\mathrm{d}x} + v\frac{\mathrm{d}u}{\mathrm{d}x}$$

This is known as the product rule.

Problem 10. Find the differential coefficient of $y = 3x^2 \sin 2x$.

 $3x^2 \sin 2x$ is a product of two terms $3x^2$ and $\sin 2x$ Let $u = 3x^2$ and $v = \sin 2x$ Using the product rule:

$$\frac{dy}{dx} = u \quad \frac{dv}{dx} \quad + \quad v \quad \frac{du}{dx}$$
$$\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow$$

gives: $\frac{dy}{dx} = (3x^2)(2\cos 2x) + (\sin 2x)(6x)$

i.e.
$$\frac{dy}{dx} = 6x^2 \cos 2x + 6x \sin 2x$$
$$= 6x(x \cos 2x + \sin 2x)$$

Note that the differential coefficient of a product is **not** obtained by merely differentiating each term and multiplying the two answers together. The product rule formula **must** be used when differentiating products.

Problem 11. Find the rate of change of y with respect to x given $y = 3\sqrt{x} \ln 2x$.

The rate of change of y with respect to x is given by $\frac{dy}{dx}$

$$y = 3\sqrt{x} \ln 2x = 3x^{\frac{1}{2}} \ln 2x, \text{ which is a product.}$$

Let $u = 3x^{\frac{1}{2}}$ and $v = \ln 2x$
Then $\frac{dy}{dx} = u$ $\frac{dv}{dx} + v$ $\frac{du}{dx}$

$$= \left(3x^{\frac{1}{2}}\right) \left(\frac{1}{x}\right) + (\ln 2x) \left[3\left(\frac{1}{2}\right)x^{\frac{1}{2}-1}\right]$$

$$= 3x^{\frac{1}{2}-1} + (\ln 2x) \left(\frac{3}{2}\right)x^{-\frac{1}{2}}$$

$$= 3x^{-\frac{1}{2}} \left(1 + \frac{1}{2} \ln 2x \right)$$

i.e.
$$\frac{dy}{dx} = \frac{3}{\sqrt{x}} \left(1 + \frac{1}{2} \ln 2x \right)$$

Problem 12. Differentiate $y = x^3 \cos 3x \ln x$.

Let
$$u = x^3 \cos 3x$$
 (i.e. a product) and $v = \ln x$
Then $\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$
where $\frac{du}{dx} = (x^3)(-3\sin 3x) + (\cos 3x)(3x^2)$
and $\frac{dv}{dx} = \frac{1}{x}$
Hence $\frac{dy}{dx} = (x^3 \cos 3x) \left(\frac{1}{x}\right) + (\ln x)[-3x^3 \sin 3x + 3x^2 \cos 3x]$
 $= x^2 \cos 3x + 3x^2 \ln x(\cos 3x - x \sin 3x)$

i.e.
$$\frac{dy}{dx} = x^2 \{\cos 3x + 3\ln x(\cos 3x - x\sin 3x)\}$$

Problem 13. Determine the rate of change of voltage, given $v = 5t \sin 2t$ volts when t = 0.2 s.

Rate of change of voltage =
$$\frac{dv}{dt}$$

= $(5t)(2\cos 2t) + (\sin 2t)(5)$
= $10t\cos 2t + 5\sin 2t$

When
$$t = 0.2$$
, $\frac{\mathrm{d}v}{\mathrm{d}t} = 10(0.2)\cos 2(0.2)$

$$+5\sin 2(0.2)$$

$$= 2\cos 0.4 + 5\sin 0.4 \text{ (where } \cos 0.4 \text{ means the cosine of } 0.4 \text{ radians)}$$

Hence
$$\frac{dv}{dt} = 2(0.92106) + 5(0.38942)$$

= 1.8421 + 1.9471 = 3.7892

i.e., the rate of change of voltage when t = 0.2 s is 3.79 volts/s, correct to 3 significant figures.

Exercise 2. Differentiation of a product

E. Differentiation of a Quotient

When $y = \frac{u}{v}$, and *u* and *v* are both functions of *x*

then
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{v\frac{\mathrm{d}u}{\mathrm{d}x} - u\frac{\mathrm{d}v}{\mathrm{d}x}}{v^2}$$

This is known as the **quotient rule**.

Problem 14. Find the differential coefficient of $y = \frac{4 \sin 5x}{5x^4}$.

$$\frac{4\sin 5x}{5x^4}$$
 is a quotient. Let $u = 4\sin 5x$ and $v = 5x^4$

(Note that v is **always** the denominator and u the numerator)

$$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$
where $\frac{du}{dx} = (4)(5)\cos 5x = 20\cos 5x$
and $\frac{dv}{dx} = (5)(4)x^3 = 20x^3$
Hence $\frac{dy}{dx} = \frac{(5x^4)(20\cos 5x) - (4\sin 5x)(20x^3)}{(5x^4)^2}$
 $= \frac{100x^4\cos 5x - 80x^3\sin 5x}{25x^8}$
 $= \frac{20x^3[5x\cos 5x - 4\sin 5x]}{25x^8}$
i.e. $\frac{dy}{dx} = \frac{4}{5x^5}(5x\cos 5x - 4\sin 5x)$

Note that the differential coefficient is **not** obtained by merely differentiating each term in turn and then dividing the numerator by the denominator. The quotient formula **must** be used when differentiating quotients. Problem 15. Determine the differential coefficient of $y = \tan ax$.

 $y = \tan ax = \frac{\sin ax}{\cos ax}$. Differentiation of $\tan ax$ is thus treated as a quotient with $u = \sin ax$ and $v = \cos ax$

$$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$
$$= \frac{(\cos ax)(a\cos ax) - (\sin ax)(-a\sin ax)}{(\cos ax)^2}$$
$$= \frac{a\cos^2 ax + a\sin^2 ax}{(\cos ax)^2} = \frac{a(\cos^2 ax + \sin^2 ax)}{\cos^2 ax}$$
$$= \frac{a}{\cos^2 ax}, \text{ since } \cos^2 ax + \sin^2 ax = 1$$
(see Chapter 16)

Hence
$$\frac{dy}{dx} = a \sec^2 ax$$
 since $\sec^2 ax = \frac{1}{\cos^2 ax}$

Problem 16. Find the derivative of
$$y = \sec ax$$
.

$$y = \sec ax = \frac{1}{\cos ax}$$
 (i.e. a quotient). Let $u = 1$ and

$$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

$$= \frac{(\cos ax)(0) - (1)(-a\sin ax)}{(\cos ax)^2}$$

$$= \frac{a\sin ax}{\cos^2 ax} = a\left(\frac{1}{\cos ax}\right)\left(\frac{\sin ax}{\cos ax}\right)$$
i.e. $\frac{dy}{dx} = a \sec ax \tan ax$

Problem 17. Differentiate $y = \frac{te^{2t}}{2\cos t}$

The function $\frac{te^{2t}}{2\cos t}$ is a quotient, whose numerator is a product. Let $u = te^{2t}$ and $v = 2\cos t$ then $\frac{du}{dt} = (t)(2e^{2t}) + (e^{2t})(1)$ and $\frac{dv}{dt} = -2\sin t$

Hence
$$\frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$

$$= \frac{(2 \cos t)[2te^{2t} + e^{2t}] - (te^{2t})(-2 \sin t)}{(2 \cos t)^2}$$

$$= \frac{4te^{2t} \cos t + 2e^{2t} \cos t + 2te^{2t} \sin t}{4 \cos^2 t}$$

$$= \frac{2e^{2t}[2t \cos t + \cos t + t \sin t]}{4 \cos^2 t}$$

i.e. $\frac{dy}{dx} = \frac{e^{2t}}{2\cos^2 t} (2t\cos t + \cos t + t\sin t)$

Problem 18. Determine the gradient of the curve $y = \frac{5x}{2x^2 + 4}$ at the point $\left(\sqrt{3}, \frac{\sqrt{3}}{2}\right)$.

Let
$$y = 5x$$
 and $v = 2x^2 + 4$

$$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2} = \frac{(2x^2 + 4)(5) - (5x)(4x)}{(2x^2 + 4)^2}$$

$$= \frac{10x^2 + 20 - 20x^2}{(2x^2 + 4)^2} = \frac{20 - 10x^2}{(2x^2 + 4)^2}$$
At the point $\left(\sqrt{3}, \frac{\sqrt{3}}{2}\right), x = \sqrt{3}$,
hence the gradient $= \frac{dy}{dx} = \frac{20 - 10(\sqrt{3})^2}{[2(\sqrt{3})^2 + 4]^2}$

$$= \frac{20 - 30}{100} = -\frac{1}{10}$$

Exercise 3. Differentiation of a quotient.

F. Function of a Function

It is often easier to make a substitution before differentiating.

If y is a function of x then

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \times \frac{\mathrm{d}u}{\mathrm{d}x}$$

This is known as the **'function of a function'** rule (or sometimes the **chain rule**).

For example, if $y = (3x - 1)^9$ then, by making the substitution u = (3x - 1), $y = u^9$, which is of the 'standard' form.

Hence $\frac{dy}{du} = 9u^8$ and $\frac{du}{dx} = 3$ Then $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = (9u^8)(3) = 27u^8$

Rewriting *u* as (3x - 1) gives: $\frac{dy}{dx} = 27(3x - 1)^8$

Since *y* is a function of *u*, and *u* is a function of *x*, then *y* is a function of a function of *x*.

Problem 19. Differentiate $y = 3\cos(5x^2 + 2)$.

Let $u = 5x^2 + 2$ then $y = 3\cos u$

Hence
$$\frac{du}{dx} = 10x$$
 and $\frac{dy}{du} = -3 \sin u$.

Using the function of a function rule,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \times \frac{\mathrm{d}u}{\mathrm{d}x} = (-3\sin u)(10x) = -30x\sin u$$

Rewriting *u* as $5x^2 + 2$ gives:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -30x\,\sin(5x^2+2)$$

Problem 20. Find the derivative of $y = (4t^3 - 3t)^6$.

Let
$$u = 4t^3 - 3t$$
, then $y = u^6$
Hence $\frac{du}{dt} = 12t^2 - 3$ and $\frac{dy}{du} = 6u^5$

Using the function of a function rule,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \times \frac{\mathrm{d}u}{\mathrm{d}x} = (6u^5)(12t^2 - 3)$$

Rewriting *u* as $(4t^3 - 3t)$ gives:

$$\frac{dy}{dt} = 6(4t^3 - 3t)^5(12t^2 - 3)$$
$$= 18(4t^2 - 1)(4t^3 - 3t)^5$$

Problem 21. Determine the differential coefficient of $y = \sqrt{(3x^2 + 4x - 1)}$.

$$y = \sqrt{(3x^2 + 4x - 1)} = (3x^2 + 4x - 1)^{\frac{1}{2}}$$

Let $u = 3x^2 + 4x - 1$ then $y = u^{\frac{1}{2}}$

Hence
$$\frac{du}{dx} = 6x + 4$$
 and $\frac{dy}{du} = \frac{1}{2}u^{-\frac{1}{2}} = \frac{1}{2\sqrt{u}}$

Using the function of a function rule,

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = \left(\frac{1}{2\sqrt{u}}\right)(6x+4) = \frac{3x+2}{\sqrt{u}}$$

i.e. $\frac{dy}{dx} = \frac{3x+2}{\sqrt{(3x^2+4x-1)}}$

- 1

Problem 22. Differentiate $y = 3 \tan^4 3x$.

Let
$$u = \tan 3x$$
 then $y = 3u^4$
Hence $\frac{du}{dx} = 3 \sec^2 3x$, (from Problem 15), and
 $\frac{dy}{du} = 12u^3$
Then $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = (12u^3)(3 \sec^2 3x)$
 $= 12(\tan 3x)^3(3 \sec^2 3x)$
i.e. $\frac{dy}{dx} = 36 \tan^3 3x \sec^2 3x$

Problem 23. Find the differential coefficient of $y = \frac{2}{(2t^3 - 5)^4}$

$$y = \frac{2}{(2t^3 - 5)^4} = 2(2t^3 - 5)^{-4}.$$
 Let $u = (2t^3 - 5),$
then $y = 2u^{-4}$
Hence $\frac{du}{dt} = 6t^2$ and $\frac{dy}{du} = -8u^{-5} = \frac{-8}{u^5}$
Then $\frac{dy}{dt} = \frac{dy}{du} \times \frac{du}{dt} = \left(\frac{-8}{u^5}\right)(6t^2)$
 $= \frac{-48t^2}{(2t^3 - 5)^5}$

Exercise 4. Function of a function

G. Successive Differentiation

When a function y = f(x) is differentiated with respect to x the differential coefficient is written as $\frac{dy}{dx}$ or f'(x). If the expression is differentiated again, the second differential coefficient is obtained and is written as $\frac{d^2y}{dx^2}$ (pronounced dee two y by dee x squared) or f''(x) (pronounced f double-dash x).

By successive differentiation further higher derivatives such as $\frac{d^3y}{dx^3}$ and $\frac{d^4y}{dx^4}$ may be obtained.

Thus if $y = 3x^4$, $\frac{dy}{dx} = 12x^3$, $\frac{d^2y}{dx^2} = 36x^2$,

$$\frac{d^3y}{dx^3} = 72x, \frac{d^4y}{dx^4} = 72 \text{ and } \frac{d^5y}{dx^5} = 0.$$

Problem 24. If $f(x) = 2x^5 - 4x^3 + 3x - 5$, find f''(x).

$$f(x) = 2x^{5} - 4x^{3} + 3x - 5$$

$$f'(x) = 10x^{4} - 12x^{2} + 3$$

$$f''(x) = 40x^{3} - 24x = 4x(10x^{2} - 6)$$

Problem 25. If $y = \cos x - \sin x$, evaluate x, in the range $0 \le x \le \frac{\pi}{2}$, when $\frac{d^2y}{dx^2}$ is zero.

Since $y = \cos x - \sin x$, $\frac{dy}{dx} = -\sin x - \cos x$ and $\frac{d^2y}{dx^2} = -\cos x + \sin x$. When $\frac{d^2y}{dx^2}$ is zero, $-\cos x + \sin x = 0$, i.e. $\sin x = \cos x$ or $\frac{\sin x}{\cos x} = 1$. Hence $\tan x = 1$ and $x = \arctan 1 = 45^\circ$ or $\frac{\pi}{4}$ rads in the range $0 \le x \le \frac{\pi}{2}$ Problem 26. Given $y = 2xe^{-3x}$ show that

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 6\frac{\mathrm{d}y}{\mathrm{d}x} + 9y = 0.$$

 $y = 2xe^{-3x}$ (i.e. a product)

Hence
$$\frac{dy}{dx} = (2x)(-3e^{-3x}) + (e^{-3x})(2)$$

 $= -6xe^{-3x} + 2e^{-3x}$
 $\frac{d^2y}{dx^2} = [(-6x)(-3e^{-3x}) + (e^{-3x})(-6)]$
 $+ (-6e^{-3x})$
 $= 18xe^{-3x} - 6e^{-3x} - 6e^{-3x}$
i.e. $\frac{d^2y}{dx^2} = 18xe^{-3x} - 12e^{-3x}$

Substituting values into $\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 9y$ gives:

$$(18xe^{-3x} - 12e^{-3x}) + 6(-6xe^{-3x} + 2e^{-3x}) + 9(2xe^{-3x}) = 18xe^{-3x} - 12e^{-3x} - 36xe^{-3x} + 12e^{-3x} + 18xe^{-3x} = 0$$

Thus when $y = 2xe^{-3x}$, $\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 9y = 0$

Problem 27. Evaluate $\frac{d^2y}{d\theta^2}$ when $\theta = 0$ given $y = 4 \sec 2\theta$.

Since $y = 4 \sec 2\theta$,

then
$$\frac{dy}{d\theta} = (4)(2) \sec 2\theta \tan 2\theta \text{ (from Problem 16)}$$
$$= 8 \sec 2\theta \tan 2\theta \text{ (i.e. a product)}$$
$$\frac{d^2y}{d\theta^2} = (8 \sec 2\theta)(2 \sec^2 2\theta)$$
$$+ (\tan 2\theta)[(8)(2) \sec 2\theta \tan 2\theta]$$
$$= 16 \sec^3 2\theta + 16 \sec 2\theta \tan^2 2\theta$$
When
$$\theta = 0, \frac{d^2y}{d\theta^2} = 16 \sec^3 0 + 16 \sec 0 \tan^2 0$$
$$= 16(1) + 16(1)(0) = 16.$$

Exercise 5. Successive differentiation