Module 1 Introduction to Calculus

I. Introduction to Calculus

Calculus is a branch of mathematics involving or leading to calculations dealing with continuously varying functions.
Calculus is a subject that falls into two parts:
(i) differential calculus (or differentiation) and
(ii) integral calculus (or integration).

Differentiation is used in calculations involving velocity and acceleration, rates of change and maximum and minimum values of curves.

A. Functional Notation

In an equation such as $y=3 x^{2}+2 x-5, y$ is said to be a function of x and may be written as $y=f(x)$.

An equation written in the form $f(x)=3 x^{2}+2 x-5$ is termed functional notation. The value of $f(x)$ when $x=0$ is denoted by $f(0)$, and the value of $f(x)$ when $x=2$ is denoted by $f(2)$ and so on. Thus when $f(x)=$ $3 x^{2}+2 x-5$, then

$$
\begin{aligned}
f(0) & =3(0)^{2}+2(0)-5=-5 \\
\text { and } \quad f(2) & =3(2)^{2}+2(2)-5=11 \text { and so on. }
\end{aligned}
$$

Problem 1. If $f(x)=4 x^{2}-3 x+2$ find:
$f(0), f(3), f(-1)$ and $f(3)-f(-1)$

$$
\begin{aligned}
& f(x)=4 x^{2}-3 x+2 \\
& f(0)=4(0)^{2}-3(0)+2=\mathbf{2}
\end{aligned}
$$

$$
\begin{aligned}
f(3) & =4(3)^{2}-3(3)+2 \\
& =36-9+2=\mathbf{2 9} \\
f(-1) & =4(-1)^{2}-3(-1)+2 \\
& =4+3+2=\mathbf{9}
\end{aligned}
$$

$$
f(3)-f(-1)=29-9=\mathbf{2 0}
$$

Problem 2. Given that $f(x)=5 x^{2}+x-7$ determine:
(i) $f(2) \div f(1)$
(iii) $f(3+a)-f(3)$
(ii) $f(3+a)$
(iv) $\frac{f(3+a)-f(3)}{a}$

$$
f(x)=5 x^{2}+x-7
$$

(i) $f(2)=5(2)^{2}+2-7=15$

$$
\begin{aligned}
& f(1)=5(1)^{2}+1-7=-1 \\
& f(2) \div f(1)=\frac{15}{-1}=-\mathbf{1 5}
\end{aligned}
$$

(ii) $f(3+a)=5(3+a)^{2}+(3+a)-7$

$$
\begin{aligned}
& =5\left(9+6 a+a^{2}\right)+(3+a)-7 \\
& =45+30 a+5 a^{2}+3+a-7 \\
& =\mathbf{4 1}+\mathbf{3 1} \boldsymbol{a}+\mathbf{5} \boldsymbol{a}^{\mathbf{2}}
\end{aligned}
$$

(iii) $f(3)=5(3)^{2}+3-7=41$

$$
\begin{aligned}
f(3+a)-f(3) & =\left(41+31 a+5 a^{2}\right)-(41) \\
& =\mathbf{3 1} \boldsymbol{a}+\mathbf{5} \boldsymbol{a}^{\mathbf{2}}
\end{aligned}
$$

(iv) $\frac{f(3+a)-f(3)}{a}=\frac{31 a+5 a^{2}}{a}=\mathbf{3 1}+\mathbf{5 a}$

Exercise 1. Functional Notation

B. The gradient of a curve

(a) If a tangent is drawn at a point P on a curve, then the gradient of this tangent is said to be the gradient of the curve at P. In Fig. 1, the gradient of the curve at P is equal to the gradient of the tangent $P Q$.

Figure 1
(b) For the curve shown in Fig. 2, let the points A and B have co-ordinates $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, respectively. In functional notation, $y_{1}=f\left(x_{1}\right)$ and $y_{2}=f\left(x_{2}\right)$ as shown.

The gradient of the chord $A B$

$$
\begin{aligned}
=\frac{B C}{A C} & =\frac{B D-C D}{E D} \\
& =\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{\left(x_{2}-x_{1}\right)}
\end{aligned}
$$

Figure 2

Figure 3
(c) For the curve $f(x)=x^{2}$ shown in Fig. 3:
(i) the gradient of chord $A B$

$$
=\frac{f(3)-f(1)}{3-1}=\frac{9-1}{2}=4
$$

(ii) the gradient of chord $A C$

$$
=\frac{f(2)-f(1)}{2-1}=\frac{4-1}{1}=3
$$

(iii) the gradient of chord $A D$

$$
=\frac{f(1.5)-f(1)}{1.5-1}=\frac{2.25-1}{0.5}=2.5
$$

(iv) if E is the point on the curve $(1.1, f(1.1))$ then the gradient of chord $A E$

$$
\begin{aligned}
& =\frac{f(1.1)-f(1)}{1.1-1} \\
& =\frac{1.21-1}{0.1}=2.1
\end{aligned}
$$

(v) if F is the point on the curve $(1.01, f(1.01))$ then the gradient of chord $A F$

$$
\begin{aligned}
& =\frac{f(1.01)-f(1)}{1.01-1} \\
& =\frac{1.0201-1}{0.01}=2.01
\end{aligned}
$$

Thus as point B moves closer and closer to point A the gradient of the chord approaches nearer and nearer to the value 2 . This is called the limiting value of the gradient of the chord $A B$ and when B coincides with A the chord becomes the tangent to the curve.

Exercise 2. Gradient of a Curve

C, Differentiation from first principles

(i) In Fig. 4, A and B are two points very close together on a curve, δx (delta x) and δy (delta y) representing small increments in the x and y directions, respectively.

Gradient of chord $A B=\frac{\delta y}{\delta x}$
However,

$$
\delta y=f(x+\delta x)-f(x)
$$

Hence

$$
\frac{\delta y}{\delta x}=\frac{f(x+\delta x)-f(x)}{\delta x}
$$

Figure 4
As δx approaches zero, $\frac{\delta y}{\delta x}$ approaches a limiting value and the gradient of the chord approaches the gradient of the tangent at A.
(ii) When determining the gradient of a tangent to a curve there are two notations used. The gradient of the curve at A in Fig. 4 can either be written as:

$$
\operatorname{limit}_{\delta x \rightarrow 0} \frac{\delta y}{\delta x} \text { or } \operatorname{limit}_{\delta x \rightarrow 0}\left\{\frac{f(x+\delta x)-f(x)}{\delta x}\right\}
$$

In Leibniz notation, $\frac{d y}{d x}=\operatorname{limit}_{\delta x \rightarrow 0} \frac{\delta y}{\delta x}$
In functional notation,

$$
f^{\prime}(x)=\operatorname{limit}_{\delta x \rightarrow 0}\left\{\frac{f(x+\delta x)-f(x)}{\delta x}\right\}
$$

(iii) $\frac{d y}{d x}$ is the same as $f^{\prime}(x)$ and is called the differential coefficient or the derivative. The process of finding the differential coefficient is called differentiation.
Summarizing, the differential coefficient,

$$
\begin{aligned}
\frac{d y}{d x}=f^{\prime}(x) & =\underset{\delta x \rightarrow 0}{\operatorname{limit} \frac{\delta y}{\delta x}} \\
& =\operatorname{limit}_{\delta x \rightarrow 0}\left\{\frac{f(x+\delta x)-f(x)}{\delta x}\right\}
\end{aligned}
$$

Problem 3. Differentiate from first principles $f(x)=x^{2}$ and determine the value of the gradient of the curve at $x=2$

To 'differentiate from first principles' means 'to find $f^{\prime}(x)$ ' by using the expression

$$
\begin{aligned}
f^{\prime}(x) & =\operatorname{limit}_{\delta x \rightarrow 0}\left\{\frac{f(x+\delta x)-f(x)}{\delta x}\right\} \\
f(x) & =x^{2}
\end{aligned}
$$

Substituting $(x+\delta x)$ for x gives

$$
\begin{aligned}
& f(x+\delta x)=(x+\delta x)^{2}=x^{2}+2 x \delta x+\delta x^{2}, \text { hence } \\
& f^{\prime}(x)=\operatorname{limit}_{\delta x \rightarrow 0}\left\{\frac{\left(x^{2}+2 x \delta x+\delta x^{2}\right)-\left(x^{2}\right)}{\delta x}\right\} \\
& =\operatorname{limit}_{\delta x \rightarrow 0}\left\{\frac{2 x \delta x+\delta x^{2}}{\delta x}\right\}=\operatorname{limit}_{\delta x \rightarrow 0}\{2 x+\delta x\}
\end{aligned}
$$

As $\delta x \rightarrow 0,[2 x+\delta x] \rightarrow[2 x+0]$. Thus $f^{\prime}(x)=2 \boldsymbol{x}$, i.e. the differential coefficient of x^{2} is $2 x$. At $x=2$, the gradient of the curve, $f^{\prime}(x)=2(2)=\mathbf{4}$

Problem 4. Find the differential coefficient of

$$
y=5 x
$$

By definition, $\frac{d y}{d x}=f^{\prime}(x)$

$$
=\operatorname{limit}_{\delta x \rightarrow 0}\left\{\frac{f(x+\delta x)-f(x)}{\delta x}\right\}
$$

The function being differentiated is $y=f(x)=5 x$. Substituting $(x+\delta x)$ for x gives:

$$
\begin{aligned}
& f(x+\delta x)=5(x+\delta x)=5 x+5 \delta x . \text { Hence } \\
& \begin{aligned}
\frac{d y}{d x}=f^{\prime}(x) & =\operatorname{limit}_{\delta x \rightarrow 0}\left\{\frac{(5 x+5 \delta x)-(5 x)}{\delta x}\right\} \\
& =\operatorname{limit}_{\delta x \rightarrow 0}\left\{\frac{5 \delta x}{\delta x}\right\}=\operatorname{limit}_{\delta x \rightarrow 0}\{5\}
\end{aligned}
\end{aligned}
$$

Since the term δx does not appear in [5] the limiting value as $\delta x \rightarrow 0$ of [5] is 5 . Thus $\frac{\boldsymbol{d} \boldsymbol{y}}{\boldsymbol{d} \boldsymbol{x}}=\mathbf{5}$, i.e. the differential coefficient of $5 x$ is 5 . The equation $y=5 x$ represents a straight line of gradient 5
The 'differential coefficient' (i.e. $\frac{d y}{d x}$ or $f^{\prime}(x)$) means 'the gradient of the curve', and since the slope of the line $y=5 x$ is 5 this result can be obtained by inspection. Hence, in general, if $y=k x$ (where k is a constant), then the gradient of the line is k and $\frac{d y}{d x}$ or $f^{\prime}(x)=k$.

Problem 5. Find the derivative of $y=8$
$y=f(x)=8$. Since there are no x-values in the original equation, substituting $(x+\delta x)$ for x still gives
$f(x+\delta x)=8$. Hence

$$
\begin{aligned}
\frac{d y}{d x}=f^{\prime}(x) & =\operatorname{limit}_{\delta x \rightarrow 0}\left\{\frac{f(x+\delta x)-f(x)}{\delta x}\right\} \\
& =\operatorname{limit}_{\delta x \rightarrow 0}\left\{\frac{8-8}{\delta x}\right\}=0
\end{aligned}
$$

Thus, when $y=8, \frac{\boldsymbol{d} \boldsymbol{y}}{\boldsymbol{d} \boldsymbol{x}}=\mathbf{0}$
The equation $y=8$ represents a straight horizontal line and the gradient of a horizontal line is zero, hence the result could have been determined by inspection. 'Finding the derivative' means 'finding the gradient', hence, in general, for any horizontal line if $y=k$ (where k is a constant) then $\frac{d y}{d x}=0$.

Problem 6. Differentiate from first principles

$$
f(x)=2 x^{3}
$$

Substituting $(x+\delta x)$ for x gives

$$
\left.\begin{array}{rl}
f(x+\delta x) & =2(x+\delta x)^{3} \\
& =2(x+\delta x)\left(x^{2}+2 x \delta x+\delta x^{2}\right) \\
& =2\left(x^{3}+3 x^{2} \delta x+3 x \delta x^{2}+\delta x^{3}\right) \\
& =2 x^{3}+6 x^{2} \delta x+6 x \delta x^{2}+2 \delta x^{3}
\end{array}\right\} \begin{aligned}
& \frac{d y}{d x}= f^{\prime}(x)=\operatorname{limit}_{\delta x \rightarrow 0}\left\{\frac{f(x+\delta x)-f(x)}{\delta x}\right\} \\
&=\operatorname{limit}_{\delta x \rightarrow 0}\left\{\frac{\left(2 x^{3}+6 x^{2} \delta x+6 x \delta x^{2}+2 \delta x^{3}\right)-\left(2 x^{3}\right)}{\delta x}\right\} \\
&=\operatorname{limit}_{\delta x \rightarrow 0}\left\{\frac{6 x^{2} \delta x+6 x \delta x^{2}+2 \delta x^{3}}{\delta x}\right\} \\
&=\operatorname{limit}_{\delta x \rightarrow 0}\left\{6 x^{2}+6 x \delta x+2 \delta x^{2}\right\}
\end{aligned}
$$

Hence $\boldsymbol{f}^{\prime}(\boldsymbol{x})=\mathbf{6} \boldsymbol{x}^{\mathbf{2}}$, i.e. the differential coefficient of $2 x^{3}$ is $6 x^{2}$.

Problem 7. Find the differential coefficient of $y=$ $4 x^{2}+5 x-3$ and determine the gradient of the curve at $x=-3$

$$
\left.\left.\begin{array}{rl}
y=f(x) & =4 x^{2}+5 x-3 \\
f(x+\delta x) & =4(x+\delta x)^{2}+5(x+\delta x)-3 \\
& =4\left(x^{2}+2 x \delta x+\delta x^{2}\right)+5 x+5 \delta x-3 \\
& =4 x^{2}+8 x \delta x+4 \delta x^{2}+5 x+5 \delta x-3
\end{array}\right] \begin{array}{rl}
\frac{d y}{d x}=f^{\prime}(x) & =\operatorname{limit}_{\delta x \rightarrow 0}\left\{\frac{f(x+\delta x)-f(x)}{\delta x}\right\} \\
=\operatorname{limimit}_{\delta x \rightarrow 0}\left\{\frac{\left(4 x^{2}+8 x \delta x+4 \delta x^{2}+5 x+5 \delta x-3\right)}{-\left(4 x^{2}+5 x-3\right)}\right. \\
\delta x
\end{array}\right\}
$$

At $x=-3$, the gradient of the curve

$$
=\frac{d y}{d x}=f^{\prime}(x)=8(-3)+5=\mathbf{- 1 9}
$$

Differentiation from first principles can be a lengthy process and it would not be convenient to go through this procedure every time we want to differentiate a function. In reality we do not have to, because a set of general rules have evolved from the above procedure, which we consider in the following section.

D. Differentiation of $y=a x^{n}$ by the general rule

From differentiation by first principles, a general rule for differentiating $a x^{n}$ emerges where a and n are any constants. This rule is:

$$
\begin{gathered}
\text { if } y=a x^{n} \text { then } \frac{d y}{d x}=a n x^{n-1} \\
\text { or, if } f(x)=a x^{n} \text { then } f^{\prime}(x)=a n x^{n-1}
\end{gathered}
$$

(Each of the results obtained in worked problems 3 to 7 may be deduced by using this general rule.) When differentiating, results can be expressed in a number of ways.

For example:
(i) if $y=3 x^{2}$ then $\frac{d y}{d x}=6 x$,
(ii) if $f(x)=3 x^{2}$ then $f^{\prime}(x)=6 x$,
(iii) the differential coefficient of $3 x^{2}$ is $6 x$,
(iv) the derivative of $3 x^{2}$ is $6 x$, and
(v) $\frac{d}{d x}\left(3 x^{2}\right)=6 x$

Problem 8. Using the general rule, differentiate the following with respect to x :
(a) $y=5 x^{7}$
(b) $y=3 \sqrt{x}$
(c) $y=\frac{4}{x^{2}}$
(a) Comparing $y=5 x^{7}$ with $y=a x^{n}$ shows that $a=5$ and $n=7$. Using the general rule,

$$
\frac{d y}{d x}=a n x^{n-1}=(5)(7) x^{7-1}=35 x^{6}
$$

(b) $y=3 \sqrt{x}=3 x^{\frac{1}{2}}$. Hence $a=3$ and $n=\frac{1}{2}$

$$
\begin{aligned}
\frac{d y}{d x} & =a n x^{n-1}=(3) \frac{1}{2} x^{\frac{1}{2}-1} \\
& =\frac{3}{2} x^{-\frac{1}{2}}=\frac{3}{2 x^{\frac{1}{2}}}=\frac{3}{2 \sqrt{x}}
\end{aligned}
$$

(c) $y=\frac{4}{x^{2}}=4 x^{-2}$. Hence $a=4$ and $n=-2$

$$
\begin{aligned}
\frac{d y}{d x}=a n x^{n-1} & =(4)(-2) x^{-2-1} \\
& =-8 x^{-3}=-\frac{\mathbf{8}}{\boldsymbol{x}^{3}}
\end{aligned}
$$

Problem 9. Find the differential coefficient of $y=\frac{2}{5} x^{3}-\frac{4}{x^{3}}+4 \sqrt{x^{5}}+7$

$$
\begin{aligned}
& y=\frac{2}{5} x^{3}-\frac{4}{x^{3}}+4 \sqrt{x^{5}}+7 \\
& \text { i.e. } \quad y=\frac{2}{5} x^{3}-4 x^{-3}+4 x^{5 / 2}+7 \\
& \frac{d y}{d x}=\left(\frac{2}{5}\right)(3) x^{3-1}-(4)(-3) x^{-3-1} \\
& +(4)\left(\frac{5}{2}\right) x^{(5 / 2)-1}+0 \\
& =\frac{6}{5} x^{2}+12 x^{-4}+10 x^{3 / 2}
\end{aligned}
$$

i.e. $\frac{d y}{d x}=\frac{6}{5} x^{2}+\frac{12}{x^{4}}+10 \sqrt{x^{3}}$

Problem 10. If $f(t)=5 t+\frac{1}{\sqrt{t^{3}}}$ find $f^{\prime}(t)$

$$
f(t)=5 t+\frac{1}{\sqrt{t^{3}}}=5 t+\frac{1}{t^{\frac{3}{2}}}=5 t^{1}+t^{-\frac{3}{2}}
$$

Hence $\quad f^{\prime}(t)=(5)(1) t^{1-1}+\left(-\frac{3}{2}\right) t^{-\frac{3}{2}-1}$

$$
\begin{aligned}
& =5 t^{0}-\frac{3}{2} t^{-\frac{5}{2}} \\
\text { i.e. } \quad f^{\prime}(t) & =5-\frac{3}{2 t^{\frac{5}{2}}}=\mathbf{5}-\frac{\mathbf{3}}{\mathbf{2 \sqrt { t ^ { 5 } }}}
\end{aligned}
$$

Problem 11. Differentiate $y=\frac{x+2)^{2}}{x}$ with respect to x

$$
\begin{aligned}
& y=\frac{(x+2)^{2}}{x}=\frac{x^{2}+4 x+4}{x} \\
& =\frac{x^{2}}{x}+\frac{4 x}{x}+\frac{4}{x} \\
& \text { i.e. } \\
& y=x+4+4 x^{-1} \\
& \text { Hence } \\
& \frac{d y}{d x}=1+0+(4)(-1) x^{-1-1} \\
& =1-4 x^{-2}=\mathbf{1}-\frac{\mathbf{4}}{\boldsymbol{x}^{\mathbf{2}}}
\end{aligned}
$$

Exercise 4. Differentiation of $y=a x^{n}$ by the

 general rule
E. Differentiation of sine and cosine functions

Figure 5(a) shows a graph of $y=\sin \theta$. The gradient is continually changing as the curve moves from O to A to B to C to D. The gradient, given by $\frac{d y}{d \theta}$, may be plotted in a corresponding position below $y=\sin \theta$, a s shown in Fig. 5(b).
(a)

Figure 5
(i) At 0 , the gradient is positive and is at its steepest. Hence 0^{\prime} is the maximum positive value.
(ii) Between 0 and A the gradient is positive but is decreasing in value until at A the gradient is zero, shown as A^{\prime}.

Figure 6
(iii) Between A and B the gradient is negative but is increasing in value until at B the gradient is at its steepest. Hence B^{\prime} is a maximum negative value.
(iv) If the gradient of $y=\sin \theta$ is further investigated between B and C and C and D then the resulting graph of $\frac{d y}{d \theta}$ is seen to be a cosine wave.

Hence the rate of change of $\sin \theta$ is $\cos \theta$, i.e.
if

$$
y=\sin \theta \text { then } \frac{d y}{d \theta}=\cos \theta
$$

It may also be shown that:
 (where a is a constant)
and if

$$
y=\sin (a \theta+\alpha), \frac{d y}{d \theta}=a \cos (a \theta+\alpha)
$$

(where a and α are constants).
If a similar exercise is followed for $y=\cos \theta$ then the graphs of Fig. 6 result, showing $\frac{d y}{d \theta}$ to be a graph of $\sin \theta$, but displaced by π radians. If each point on the curve $y=\sin \theta$ (as shown in Fig. 5(a)) were to be made negative, (i.e. $+\frac{\pi}{2}$ is made $-\frac{\pi}{2},-\frac{3 \pi}{2}$ is made $+\frac{3 \pi}{2}$, and so on) then the graph shown in Fig. 6(b) would result. This latter graph therefore represents the curve of $-\sin \theta$.
Thus, if $y=\cos \theta, \frac{d y}{d \theta}=-\sin \theta$

It may also be shown that:
if

and if

$$
y=\cos (a \theta+\alpha), \frac{d y}{d \theta}=-a \sin (a \theta+\alpha)
$$

(where a and α are constants).

Problem 12. Differentiate the following with respect to the variable: (a) $y=2 \sin 5 \theta$
(b) $f(t)=3 \cos 2 t$
(a) $y=2 \sin 5 \theta$
$\frac{d y}{d \theta}=(2)(5) \cos 5 \theta=\mathbf{1 0} \cos 5 \theta$
(b) $f(t)=3 \cos 2 t$
$f^{\prime}(t)=(3)(-2) \sin 2 t=-6 \sin 2 t$

Problem 13. Find the differential coefficient of $y=7 \sin 2 x-3 \cos 4 x$

$$
\begin{aligned}
y & =7 \sin 2 x-3 \cos 4 x \\
\frac{d y}{d x} & =(7)(2) \cos 2 x-(3)(-4) \sin 4 x \\
& =\mathbf{1 4} \cos \mathbf{2 x + 1 2} \sin \mathbf{4 x}
\end{aligned}
$$

Problem 14. Differentiate the following with respect to the variable:
(a) $f(\theta)=5 \sin (100 \pi \theta-0.40)$
(b) $f(t)=2 \cos (5 t+0.20)$
(a) If $f(\theta)=5 \sin (100 \pi \theta-0.40)$

$$
\begin{aligned}
\left.\boldsymbol{f}^{\prime} \boldsymbol{\theta}\right) & =5[100 \pi \cos (100 \pi \theta-0.40)] \\
& =\mathbf{5 0 0} \boldsymbol{\pi} \boldsymbol{\operatorname { c o s } (\mathbf { 1 0 0 } \boldsymbol { \pi } \boldsymbol { \theta } - \mathbf { 0 . 4 0 })}
\end{aligned}
$$

(b) If $f(t)=2 \cos (5 t+0.20)$

$$
\begin{aligned}
f^{\prime}(t) & =2[-5 \sin (5 t+0.20)] \\
& =\mathbf{- 1 0} \sin (\mathbf{5 t} \boldsymbol{+} \mathbf{0 . 2 0})
\end{aligned}
$$

Problem 15. An alternating voltage is given by: $v=100 \sin 200 t$ volts, where t is the time in seconds. Calculate the rate of change of voltage when (a) $t=0.005 \mathrm{~s}$ and (b) $t=0.01 \mathrm{~s}$
$v=100 \sin 200 t$ volts. The rate of change of v is given by $\frac{d v}{d t}$.

$$
\frac{d v}{d t}=(100)(200) \cos 200 t=20000 \cos 200 t
$$

(a) When $t=0.005 \mathrm{~s}$,
$\frac{d v}{d t}=20000 \cos (200)(0.005)=20000 \cos 1$
cos 1 means 'the cosine of 1 radian' (make sure your calculator is on radians - not degrees).
Hence $\frac{d v}{d t}=\mathbf{1 0} 806$ volts per second
(b) When $t=0.01 \mathrm{~s}$,
$\frac{d v}{d t}=20000 \cos (200)(0.01)=20000 \cos 2$.
Hence $\frac{d v}{d t}=\mathbf{8 3 2 3}$ volts per second

Exercise 5. Differentiation of sine and cosine functions

F. Differentiation of $e^{a x}$ and $\operatorname{In} a x$

A graph of $y=e^{x}$ is shown in Fig. 7(a). The gradient of the curve at any point is given by $\frac{d y}{d x}$ and is continually changing. By drawing tangents to the curve at many points on the curve and measuring the gradient of the

Figure 7
tangents, values of $\frac{d y}{d x}$ for corresponding values of x may be obtained. These values are shown graphically in Fig. 7(b). The graph of $\quad \frac{d y}{d x}$ against x is identical to the original graph of $y=e^{x}$. It follows that:

$$
\text { if } y=\mathrm{e}^{x} \text {, then } \frac{d y}{d x}=e^{x}
$$

It may also be shown that

$$
\text { if } y=e^{a x}, \text { then } \frac{d y}{d x}=a e^{a x}
$$

Therefore if $y=2 e^{6 x}$, then $\frac{d y}{d x}=(2)\left(6 e^{6 x}\right)=\mathbf{1 2} e^{6 x}$
A graph of $y=\ln x$ is shown in Fig. 8(a). The gradient of the curve at any point is given by $\frac{d y}{d x}$ and is continually changing. By drawing tangents to the curve at many points on the curve and measuring the gradient of the tangents, values of $\frac{d y}{d x}$ for corresponding values of x may be obtained. These values are shown graphically in Fig. 8(b). The graph of $\frac{d y}{d x}$ against x is the graph of $\frac{d y}{d x}=\frac{1}{x}$
$\underset{\text { It follows that: if } y=\ln x}{ }$, then $\quad \frac{d y}{d x}=\frac{1}{x}$

(a)

(b)

Figure 8

It may also be shown that

$$
\text { if } y=\ln a x, \text { then } \frac{d y}{d x}=\frac{1}{x}
$$

(Note that in the latter expression ' a ' does not appear in the $\frac{d y}{d x}$ term).
Thus if $y=\ln 4 x$, then $\frac{d y}{d x}=\frac{\mathbf{1}}{\boldsymbol{x}}$
Problem 16. Differentiate the following with respect to the variable: (a) $y=3 e^{2 x}$
(b) $f(t)=\frac{4}{3 e^{5 t}}$.
(a) If $y=3 e^{2 x}$ then $\frac{\boldsymbol{d} \boldsymbol{y}}{\boldsymbol{d x}}=(3)\left(2 e^{2 x}\right)=\boldsymbol{6} e^{\boldsymbol{2 x}}$
(b) If $f(t)=\frac{4}{3 e^{5 t}}=\frac{4}{3} e^{-5 t}$, then

$$
f^{\prime}(\boldsymbol{t})=\frac{4}{3}\left(-5 e^{-5 t}\right)=-\frac{20}{3} e^{-5 t}=-\frac{\mathbf{2 0}}{\mathbf{3} e^{\mathbf{5 t}}}
$$

Problem 17. Differentiate $y=5 \ln 3 x$.
If $y=5 \ln 3 x$, then $\frac{\boldsymbol{d} \boldsymbol{y}}{\boldsymbol{d x}}=(5)\left(\frac{1}{x}\right)=\frac{\mathbf{5}}{\boldsymbol{x}}$

