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Introduction to
differential calculus

Assumed knowledge

The content of the modules:

• Coordinate geometry

• The binomial theorem

• Functions I

• Functions II

• Limits and continuity.

Motivation

How fast are you really going?

You ride your bicycle down a straight bike path. As you proceed, you keep track of your

exact position — so that, at every instant, you know exactly where you are. How fast were

you going one second after you started?

This is not a very realistic situation — it’s hard to measure your position precisely at every

instant! Nonetheless, let us suspend disbelief and imagine you have this information.

(Perhaps you have an extremely accurate GPS or a high-speed camera.) By considering

this question, we are led to some important mathematical ideas.

First, recall the formula for average velocity:

v = ∆x

∆t
,

where ∆x is the change in your position and ∆t is the time taken. Thus, average velocity

is the rate of change of position with respect to time.
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Draw a graph of your position x(t ) at time t seconds. Connect two points on the graph,

representing your position at two different times. The gradient of this line is your average

velocity over that time period.

x

t
0

∆t

∆x

Average velocity v = ∆x
∆t .

Trying to discover your velocity at the one-second mark (t = 1), you calculate your aver-

age velocity over the period from t = 1 to a slightly later time t = 1+∆t . Trying to be more

accurate, you look at shorter time intervals, with ∆t smaller and smaller. If you really

knew your position at every single instant of time, then you could work out your aver-

age velocity over any time interval, no matter how short. The three lines in the following

diagram correspond to ∆t = 2, ∆t = 1 and ∆t = 0.5.

x

t
0 1 1.5 2 3

Average velocity over shorter time intervals.

As ∆t approaches 0, you obtain better and better estimates of your instantaneous veloc-

ity at the instant t = 1. These estimates correspond to the gradients of lines connecting

closer and closer points on the graph.
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In the limit, as ∆t → 0,

lim
∆t→0

∆x

∆t

gives the precise value for the instantaneous velocity at t = 1. This is also the gradient

of the tangent to the graph at t = 1. Instantaneous velocity is the instantaneous rate of

change of position with respect to time.

Although the scenario is unrealistic, these ideas show how you could answer the question

of how fast you were going at t = 1. Given a function x(t ) describing your position at

time t , you could calculate your exact velocity at time t = 1.

In fact, it is possible to calculate the instantaneous velocity at any value of t , obtaining

a function which gives your instantaneous velocity at time t . This function is commonly

denoted by x ′(t ) or d x
d t , and is known as the derivative of x(t ) with respect to t .

In this module, we will discuss derivatives.

The more things change . . .

Velocity is an important example of a derivative, but this is just one example. The world

is full of quantities which change with respect to each other — and these rates of change

can often be expressed as derivatives. It is often important to understand and predict

how things will change, and so derivatives are important.

Here are some examples of derivatives, illustrating the range of topics where derivatives

are found:

• Mechanics. We saw that the derivative of position with respect to time is velocity.

Also, the derivative of velocity with respect to time is acceleration. And the derivative

of momentum with respect to time is the (net) force acting on an object.

• Civil engineering, topography. Let h(x) be the height of a road, or the altitude of

a mountain, as you move along a horizontal distance x. The derivative h′(x) with

respect to distance is the gradient of the road or mountain.

• Population growth. Suppose a population has size p(t ) at time t . The derivative p ′(t )

with respect to time is the population growth rate. The growth rates of human, animal

and cell populations are important in demography, ecology and biology, respectively.

• Economics. In macroeconomics, the rate of change of the gross domestic product

(GDP) of an economy with respect to time is known as the economic growth rate. It is

often used by economists and politicians as a measure of progress.
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• Mechanical engineering. Suppose that the total amount of energy produced by an

engine is E(t ) at time t . The derivative E ′(t ) of energy with respect to time is the power

of the engine.

All of these examples arise from a more abstract question in mathematics:

• Mathematics. Consider the graph of a function y = f (x), which is a curve in the

plane. What is the gradient of a tangent to this graph at a point? Equivalently, what is

the instantaneous rate of change of y with respect to x?

In this module, we discuss purely mathematical questions about derivatives. In the three

modules Applications of differentiation, Growth and decay and Motion in a straight line,

we discuss some real-world examples.

Therefore, although the Motivation section has focused on instantaneous velocity, which

is an important motivating example, we now concentrate on calculating the gradient of

a tangent to a curve.

Content

The gradient of secants and tangents to a graph

Consider a function f : R→ R and its graph y = f (x), which is a curve in the plane. We

wish to find the gradient of this curve at a point. But first we need to define properly what

we mean by the gradient of a curve at a point!

The module Coordinate geometry defines the gradient of a line in the plane: Given a

non-vertical line and two points on it, the gradient is defined as
rise

run
.

run

rise

Gradient of a line.
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Now, given a curve defined by y = f (x), and a point p on the curve, consider another

point q on the curve near p, and draw the line pq connecting p and q . This line is called

a secant line.

We write the coordinates of p as (x, y), and the coordinates of q as (x +∆x, y +∆y). Here

∆x represents a small change in x, and ∆y represents the corresponding small change

in y .

y

x
0  x x + ∆x

y = f(x)

p = (x,y)
∆x

q = (x + ∆x, y + ∆y)

∆y = f(x + ∆x) − f(x)

Secant connecting points on the graph y = f (x) at x and x +∆x.

As ∆x becomes smaller and smaller, the point q approaches p, and the secant line pq

approaches a line called the tangent to the curve at p. We define the gradient of the

curve at p to be the gradient of this tangent line.

y

x
0  x

y = f(x)

p = (x,y)

Secants on y = f (x) approaching the tangent line at x.

Note that, in this definition, the approximation of a tangent line by secant lines is just

like the approximation of instantaneous velocity by average velocities, as discussed in

the Motivation section.

With this definition, we now consider how to compute the gradient of the curve y = f (x)

at the point p = (x, y).
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Taking q = (x +∆x, y +∆y) as above, the secant line pq has gradient

rise

run
= ∆y

∆x
= f (x +∆x)− f (x)

∆x
.

Note that the symbol∆ on its own has no meaning: ∆x and∆y refer to change in x and y ,

respectively. You cannot cancel the ∆’s!

As ∆x → 0, the gradient of the tangent line is given by

lim
∆x→0

∆y

∆x
= lim
∆x→0

f (x +∆x)− f (x)

∆x
.

We also denote this limit by d y
d x :

lim
∆x→0

∆y

∆x
= d y

d x
.

The notation d y
d x indicates the instantaneous rate of change of y with respect to x, and is

not a fraction. For our purposes, the expressions d x and d y have no meaning on their

own, and the d ’s do not cancel!

The gradient of a secant is analogous to average velocity, and the gradient of a tangent

is analogous to instantaneous velocity. Velocity is the instantaneous rate of change of

position with respect to time, and the gradient of a tangent to the graph y = f (x) is the

instantaneous rate of change of y with respect to x.

Calculating the gradient of y = x2

Let us consider a specific function f (x) = x2 and its graph y = f (x), which is the standard

parabola. To illustrate the ideas in the previous section, we will calculate the gradient of

this curve at x = 1.

We first construct secant lines between the points on the graph at x = 1 and x = 1+∆x,

and calculate their gradients.

y

x
0 1 1.5 2 3

y = x2 ∆x = 2, gradient = 4

∆x = 1, gradient = 3

∆x = 0.5, gradient = 2.5

Gradients of secants from x = 1 to x = 1+∆x.
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For instance, taking ∆x = 2, we consider the secant connecting the points at x = 1 and

x = 3. Between these two points, f (x) increases from f (1) = 1 to f (3) = 9, giving ∆y = 8,

and hence

∆y

∆x
= 8

2
= 4.

We compute gradients of secants for various values of ∆x in the following table.

Secants of the parabola f (x) = x2

Secant between points ∆x ∆y = f (x +∆x)− f (x) Gradient of secant ∆y
∆x

x = 1, x = 3 2 8 4

x = 1, x = 2 1 3 3

x = 1, x = 1.5 0.5 1.25 2.5

x = 1, x = 1.1 0.1 0.21 2.1

x = 1, x = 1.001 0.001 0.002001 2.001

As ∆x approaches 0, the gradients of the secants approach 2. It turns out that indeed the

gradient of the tangent at x = 1 is 2. To see why, consider the interval of length ∆x, from

x = 1 to x = 1+∆x. We have

∆y = f (1+∆x)− f (1)

= (1+∆x)2 −12

= 2∆x + (∆x)2,

so that

∆y

∆x
= 2∆x + (∆x)2

∆x

= 2+∆x.

In the limit, as ∆x → 0, we obtain the instantaneous rate of change

d y

d x
= lim
∆x→0

∆y

∆x

= lim
∆x→0

(
2+∆x

)= 2.

(So, if you were riding your bike and your position was f (x) = x2 metres after x seconds,

then your instantaneous velocity after 1 second would be 2 metres per second.)
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There’s nothing special about the point x = 1 or the function f (x) = x2, as the following

example illustrates.

Example

Let f (x) = x3. What is the gradient of the tangent line to the graph y = f (x) at the point

(2,8)?

Solution

The gradient at x = 2 is given by the limit

lim
∆x→0

f (2+∆x)− f (2)

∆x
= lim
∆x→0

(2+∆x)3 −23

∆x

= lim
∆x→0

8+12(∆x)+6(∆x)2 + (∆x)3 −8

∆x

= lim
∆x→0

(
12+6(∆x)+ (∆x)2)= 12.

Thus the gradient of the tangent line to y = f (x) at (2,8) is 12.

Exercise 1

Using a similar method, find the gradient of the tangent line to y = x4 at (−1,1), and find

the equation of this line.

In the examples so far, we have been given a curve, and we have found the gradient of the

curve at one particular point on the curve. But we can also find the gradient at all points

simultaneously, as the next section illustrates.

Definition of the derivative

The method we used in the previous section to find the gradient of a tangent to a graph

at a point can actually be used to work out the gradient everywhere, simultaneously.

Example

Let f (x) = x2. What is the gradient of the tangent line to the graph y = f (x) at a general

point (x, f (x)) on this graph?
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Solution

We calculate the same limit as in previous examples, using the variable x in place of a

number:

lim
∆x→0

f (x +∆x)− f (x)

∆x
= lim
∆x→0

(x +∆x)2 −x2

∆x

= lim
∆x→0

x2 +2x(∆x)+ (∆x)2 −x2

∆x

= lim
∆x→0

(
2x +∆x

)= 2x.

Thus, the gradient of the tangent line at the point (x, f (x)) is 2x.

The derivative of a function f (x) is the function f ′(x) which gives the gradient of the

tangent to the graph y = f (x) at each value of x. It is often also denoted d y
d x . Thus

f ′(x) = d y

d x
= lim
∆x→0

f (x +∆x)− f (x)

∆x
.

The previous example shows that the derivative of f (x) = x2 is f ′(x) = 2x.

Exercise 2

Show that the derivative of f (x) = x3 is f ′(x) = 3x2.

Functions which have derivatives are called differentiable. Not all functions are differ-

entiable; in particular, to be differentiable, a function must be continuous. Almost all

functions we meet in secondary school mathematics are differentiable. In particular, all

polynomials, rational functions, exponentials, logarithms and trigonometric functions

(such as sin, cos and tan) are differentiable.

Derivatives of exponential, logarithmic and trigonometric functions are discussed in the

two modules Exponential and logarithmic functions and The calculus of trigonometric

functions.

We shall say a little more about which functions are differentiable and which are not in

the Appendix to this module.

In the following example and exercises, we differentiate constant and linear functions.
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Exercise 3

Show that the derivative of a constant function f (x) = c, with c a real constant, is given

by f ′(x) = 0.

Example

What is the derivative of the linear function f (x) = 3x +7?

Solution

We calculate

f ′(x) = lim
∆x→0

f (x +∆x)− f (x)

∆x

= lim
∆x→0

3(x +∆x)+7−3x −7

∆x

= lim
∆x→0

3∆x

∆x
= 3.

Thus f ′(x) = 3. (This answer makes sense, as the graph of y = f (x) is the line y = 3x +7,

which has gradient 3.)

Exercise 4

Show that the derivative of a linear function f (x) = ax + b, with a,b real constants, is

f ′(x) = a.

Notation for the derivative

We have introduced two different notations for the derivative. Both are standard, and it

is necessary to be proficient with both.

The first notation is to write f ′(x) for the derivative of the function f (x). This functional

notation was introduced by Lagrange, based on Isaac Newton’s ideas. The dash in f ′(x)

denotes that f ′(x) is derived from f (x).

The other notation is to write d y
d x . This notation refers to the instantaneous rate of change

of y with respect to x, and was introduced by Gottfried Wilhelm Leibniz, one of the dis-

coverers of calculus. (The other discoverer was Isaac Newton. In fact, the question of

who discovered calculus first was historically a point of great controversy. For more de-

tails, see the History and applications section.)
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If we have a function f (x) and its graph y = f (x), then the derivative f ′(x) is the gradient

of the tangent of y = f (x), which is also the instantaneous rate of change d y
d x . Thus the

notations are equivalent:

d y

d x
= lim
∆x→0

∆y

∆x
= lim
∆x→0

f (x +∆x)− f (x)

∆x
= f ′(x).

For example, we calculated earlier that the derivative of x2 was 2x. Thus y = x2 implies
d y
d x = 2x. Alternatively, f (x) = x2 implies f ′(x) = 2x. The two notations express the same

result.

Another common usage of Leibniz notation is to consider d
d x as an operator, meaning

‘differentiate with respect to x’. So

d y

d x
= d

d x
(y)

means: take y , and differentiate with respect to x. An alternative way to denote differen-

tiation of x2 using Leibniz notation would be

d

d x
(x2) = 2x.

At secondary school level, a ‘d ’ or ‘d x’ or ‘d y ’ has no meaning in itself; it only makes

sense as part of a d
d x or d y

d x or similar.1 The d ’s do not cancel.

The two types of notation each have their advantages and disadvantages. It is also com-

mon to mix notation, and we will do so in this module. For example, we can write

d

d x
f (x) = f ′(x).

Some derivatives

So far in the examples and exercises we have found the following derivatives.

f (x) f ′(x)

constant c 0

linear ax +b a

x2 2x

x3 3x2

1 However, in more advanced pure mathematics, d is regarded as a more complicated object called a differ-

ential operator, and objects like d x and d y are studied as examples of differential forms.
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Note that the example f (x) = ax + b includes the case f (x) = x, which has derivative

f ′(x) = 1. Since we have seen that

d

d x
(x) = 1,

d

d x
(x2) = 2x and

d

d x
(x3) = 3x2,

it is natural to conjecture that the derivative of xn is nxn−1.

We will now compute the derivative of f (x) = xn , for any positive integer n. To do so, we

need the binomial expansion

(a +b)n = an +
(

n

1

)
an−1b +

(
n

2

)
an−2b2 +·· ·+

(
n

n −2

)
a2bn−2 +

(
n

n −1

)
abn−1 +bn .

See the module The binomial theorem for details.

We begin by using the binomial theorem to expand

f (x +∆x) = (x +∆x)n

= xn +
(

n

1

)
xn−1(∆x)+

(
n

2

)
xn−2(∆x)2 +·· ·+

(
n

n −1

)
x(∆x)n−1 + (∆x)n .

We can then compute

f (x +∆x)− f (x)

∆x
= (x +∆x)n −xn

∆x

=
(

n

1

)
xn−1 +

(
n

2

)
xn−2(∆x)+·· ·+

(
n

n −1

)
x(∆x)n−2 + (∆x)n−1.

The last line has a ∆x in every term except the first. Since
(n

1

)= n, we have

f ′(x) = lim
∆x→0

f (x +∆x)− f (∆x)

∆x

= nxn−1.

The fact that the derivative of xn is nxn−1 holds more generally than just when n is a

positive integer. The next exercise shows it is also true when n =−1. Exercise 14, later in

this module, shows how to find the derivative of negative integer powers of x in general.

Exercise 5

Prove that the derivative of f (x) = 1

x
is f ′(x) =− 1

x2 . That is, prove that

d

d x
(x−1) =−x−2.
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In fact, it’s also true that for any non-zero rational number (i.e., fraction) n, the derivative

of f (x) = xn is f ′(x) = nxn−1. See exercises 20 and 21 later in this module.

Even more generally, for any real number a, including irrational a, the derivative of

f (x) = xa is f ′(x) = axa−1.

It is not obvious how to even define what it means to raise a number to the power of

an irrational number. For instance, 23 just means 2×2×2, and 2
7
5 just means

5
p

27, but

what does 2
p

3 mean? In the module Exponential and logarithmic functions, we explore

these issues, show how to define xa precisely for any real number a, and show that the

derivative of xa is axa−1.

In summary, the following theorem is true.

Theorem

For any real number a, the derivative of f (x) = xa is f ′(x) = axa−1, wherever f (x) is

defined.

Properties of the derivative

We now consider various properties of differentiation. As we proceed, we will be able to

differentiate wider and wider classes of functions.

Throughout this section and the next, we will be manipulating limits as we compute

derivatives. We therefore recall some basic rules for limits; see the module Limits and

continuity for details. The following hold provided the limits lim
x→a

f (x) and lim
x→a

g (x) exist.

• The limit of a sum (or difference) is the sum (or difference) of the limits:

lim
x→a

(
f (x)± g (x)

)= lim
x→a

f (x)± lim
x→a

g (x).

• The limit of a product is the product of the limits:

lim
x→a

f (x) g (x) = (
lim
x→a

f (x)
)(

lim
x→a

g (x)
)
.

This includes the case of multiplication by a constant c:

lim
x→a

c f (x) = c lim
x→a

f (x).
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The derivative of a constant multiple

Suppose we want to differentiate 4x7. Rather than returning to the definition of a deriva-

tive, we can use the following theorem.

Theorem

Let f be a differentiable function and let c be a constant. Then the derivative of c f (x) is

c f ′(x). That is,

d

d x

[
c f (x)

]= c f ′(x).

This fact can also be written in Leibniz notation as

d

d x

(
c f

)= c
d f

d x
.

Proof
The derivative of c f (x) is given by

lim
∆x→0

c f (x +∆x)− c f (x)

∆x
= c lim

∆x→0

f (x +∆x)− f (x)

∆x
= c f ′(x).

We may factor out the c, since it is just a constant.

Example

What is the derivative of 4x7?

Solution

The theorem tells us that the derivative of 4x7 is 4 times the derivative of x7. Hence,

d

d x

(
4x7)= 4

d

d x

(
x7)

= 4 ·7x6

= 28x6.

The derivative of a sum

A function like f (x) = x3 + 5x2 can be differentiated from first principles; alternatively,

we can use the following theorem.
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Theorem

Suppose both f and g are differentiable functions. Then the derivative of f (x)+ g (x) is

f ′(x)+ g ′(x) and, similarly, the derivative of f (x)− g (x) is f ′(x)− g ′(x). That is,

d

d x

[
f (x)+ g (x)

]= f ′(x)+ g ′(x),
d

d x

[
f (x)− g (x)

]= f ′(x)− g ′(x).

In Leibniz notation, these statements can be written as

d

d x

(
f + g

)= d f

d x
+ d g

d x
,

d

d x

(
f − g

)= d f

d x
− d g

d x
.

Proof
We prove the first statement. The derivative of f (x)+ g (x) is given by

lim
∆x→0

(
f (x +∆x)+ g (x +∆x)

)− (
f (x)+ g (x)

)
∆x

= lim
∆x→0

f (x +∆x)− f (x)

∆x
+ lim
∆x→0

g (x +∆x)− g (x)

∆x

= f ′(x)+ g ′(x).

Note that, as both the limits in the second line exist, we are retrospectively justified

in splitting the first limit into two pieces.

Exercise 6

Adapt the above proof to prove the second statement of the theorem: the derivative of

the difference of two functions is the difference of the derivatives.

Example

Find the derivative of f (x) = x3 +5x2.

Solution

We have, using the above theorems,

f ′(x) = d

d x

(
x3 +5x2)

= d

d x

(
x3)+ d

d x

(
5x2) (derivative of a sum)

= d

d x

(
x3)+5

d

d x

(
x2) (derivative of a constant multiple)

= 3x2 +10x (derivative of xn).
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Note. The solution to the previous example shows every individual step explicitly and

states which theorems are used. Once proficient with these properties of the derivative,

however, there is no need to justify each step in this way. It is common, for instance, to

go straight from

f (x) = x3 +5x2 to f ′(x) = 3x2 +10x.

Exercise 7

Let f (x) = x5 +p
x

x2 . Find f ′(x).

Linearity of the derivative

The two previous theorems (for the derivative of a sum and the derivative of a constant

multiple) can be summarised as follows. If f , g are differentiable functions and a,b are

constants, then

d

d x

[
a f (x)+b g (x)

]= a f ′(x)+b g ′(x).

The same fact can be written in Leibniz notation as

d

d x

(
a f +bg

)= a
d f

d x
+b

d g

d x
.

This property is sometimes expressed by saying that ‘differentiation is linear’.

The product, quotient and chain rules

We now move to some more involved properties of differentiation. To summarise, so far

we have found that:

• the derivative of a constant multiple is the constant multiple of the derivative

• the derivative of a sum is the sum of the derivatives

• the derivative of a difference is the difference of the derivatives.

However, it turns out that:

• the derivative of a product f (x) g (x) is not the product of the derivatives

• the derivative of a quotient
f (x)

g (x)
is not the quotient of the derivatives

• the derivative of the composition f (g (x)) is not the composition of the derivatives.

The product, quotient and chain rules tell us how to differentiate in these three situa-

tions. We consider the three rules in turn.
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The product rule

Theorem (Product rule)

Let f , g be differentiable functions. Then the derivative of their product is given by

d

d x

[
f (x) g (x)

]= f (x) g ′(x)+ g (x) f ′(x).

The product rule is also often written as

d

d x

(
f g

)= f
d g

d x
+ g

d f

d x
.

Proof
As before, we evaluate the limit which gives the derivative:

d

d x

[
f (x) g (x)

]= lim
∆x→0

f (x +∆x) g (x +∆x)− f (x) g (x)

∆x
.

The trick is to add and subtract an extra term in the numerator, so that we can

factorise and obtain some familiar-looking expressions:

f (x +∆x) g (x +∆x)− f (x) g (x)

= f (x +∆x) g (x +∆x)− f (x) g (x +∆x)+ f (x) g (x +∆x)− f (x) g (x)

= [
f (x +∆x)− f (x)

]
g (x +∆x)+ f (x)

[
g (x +∆x)− g (x)

]
.

We can then rewrite the limit as

lim
∆x→0

[ f (x +∆x)− f (x)

∆x
g (x +∆x)+ f (x)

g (x +∆x)− g (x)

∆x

]
.

Now, since the limit of a sum is the sum of the limits, and the limit of a product is

the product of the limits, we obtain

(
lim
∆x→0

f (x +∆x)− f (x)

∆x

)(
lim
∆x→0

g (x +∆x)
)
+ f (x)

(
lim
∆x→0

g (x +∆x)− g (x)

∆x

)
.

We also used the fact that f (x) does not depend on ∆x. Recognising f ′(x) and

g ′(x), and substituting ∆x = 0 into g (x +∆x), we obtain

d

d x

[
f (x) g (x)

]= f ′(x) g (x)+ f (x) g ′(x),

which is equivalent to the desired formula.
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Exercise 8

Starting from the fact that the derivative of x is 1, use the product rule to prove by induc-

tion on n, that for all positive integers n,

d

d x

(
xn)= nxn−1.

Example

Let f (x) = (x3 +2)(x2 +1). Find f ′(x).

Solution

We could expand out f (x) and differentiate term-by-term. Alternatively, with the prod-

uct rule, we obtain

f ′(x) = (x3 +2)
d

d x

(
x2 +1

)+ (x2 +1)
d

d x

(
x3 +2

)
= (x3 +2) ·2x + (x2 +1) ·3x2

= 5x4 +3x2 +4x.

Exercise 9

Using the product rule, prove that in general, for a differentiable function f : R→ R, the

derivative of ( f (x))2 with respect to x is 2 f (x) f ′(x).

Exercise 10

By using the product rule, prove the following ‘extended product rule’:

d

d x

[
f (x) g (x)h(x)

]= f ′(x) g (x)h(x)+ f (x) g ′(x)h(x)+ f (x) g (x)h′(x).

Generalise to the product of any number of functions.

The chain rule

The chain rule allows us to differentiate the composition of two functions. Recall from

the module Functions II that the composition of two functions g and f is

( f ◦ g )(x) = f (g (x)).

We start with x, apply g , then apply f . The chain rule tells us how to differentiate such a

function.
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Theorem (Chain rule)

Let f , g be differentiable functions. Then the derivative of their composition is

d

d x

[
f (g (x))

]= f ′(g (x)) g ′(x).

In Leibniz notation, we may write u = g (x) and y = f (u) = f (g (x)); diagrammatically,

x
g→ u

f→ y.

Then the chain rule says that ‘differentials cancel’ in the sense that

d y

d x
= d y

du

du

d x
.

Proof
To calculate the derivative, we must evaluate the limit

d

d x

[
f (g (x))

]= lim
∆x→0

f (g (x +∆x))− f (g (x))

∆x
.

The trick is to multiply and divide by an extra term in the expression above, as

shown, so that we obtain two expressions which both express rates of change:

f (g (x +∆x))− f (g (x))

∆x
= f (g (x +∆x))− f (g (x))

g (x +∆x)− g (x)

g (x +∆x)− g (x)

∆x
.

We can then rewrite the desired limit as(
lim
∆x→0

f (g (x +∆x))− f (g (x))

g (x +∆x)− g (x)

)(
lim
∆x→0

g (x +∆x)− g (x)

∆x

)
.

The ratio in the first limit expresses the change in the function f , from its value

at g (x) to its value at g (x +∆x), relative to the difference between g (x +∆x) and

g (x). So as ∆x → 0, this first term approaches the derivative of f at the point g (x),

namely f ′(g (x)). The second limit is clearly g ′(x). We conclude that

d

d x

[
f (g (x))

]= f ′(g (x)) g ′(x),

as required.

The proof above is not entirely rigorous: for instance, if there are values of ∆x close to

zero such that g (x +∆x)− g (x) = 0, then we have division by zero in the first limit. How-

ever, a fully rigorous proof is beyond the secondary school level.

The next two examples illustrate ‘functional’ and ‘Leibniz’ methods of attacking the same

problem using the chain rule.
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Example

Let f (x) = (x7 −x2)42. Find f ′(x).

Solution

The function f (x) is the composition of the functions g (x) = x7 −x2 and h(x) = x42, that

is, f (x) = h(g (x)). We compute

g ′(x) = 7x6 −2x, h′(x) = 42x41,

and the chain rule gives

f ′(x) = h′(g (x)) g ′(x)

= 42(x7 −x2)41(7x6 −2x).

Example

Let y = (x7 −x2)42. Find
d y

d x
.

Solution

Let u = x7 −x2, so that y = u42. We then have

d y

du
= 42u41,

du

d x
= 7x6 −2x,

and the chain rule gives

d y

d x
= d y

du

du

d x
= 42u41(7x6 −2x).

Rewriting u in terms of x gives

d y

d x
= 42(x7 −x2)41(7x6 −2x).

Exercise 11

Find the derivative of (x2 +7)100 with respect to x.

Exercise 12

In exercise 9, we proved that the derivative of ( f (x))2 with respect to x is 2 f (x) f ′(x).

Re-prove this fact using the chain rule.
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Exercise 13

Prove the following ‘extended chain rule’:

d

d x

[
f (g (h(x)))

]= f ′(g (h(x))) g ′(h(x))h′(x).

Generalise to the composition of any number of functions.

The following exercise shows how, if you know the derivative of xn for a positive num-

ber n, you can find the derivative of x−n .

Exercise 14

Let g (x) = xn , where n is positive. Using the facts g ′(x) = nxn−1 and
d

d x

(
1

x

)
= − 1

x2 and

the chain rule, calculate
d

d x

(
1

xn

)
.

The quotient rule

Theorem (Quotient rule)

Let f , g be differentiable functions. Then the derivative of their quotient is

d

d x

(
f (x)

g (x)

)
= g (x) f ′(x)− f (x) g ′(x)

(g (x))2 .

Alternatively, we can write

d

d x

(
f

g

)
= g d f

d x − f d g
d x

g 2 .

Example

Let f (x) = x2 +1

x2 −1
. What is f ′(x)?

Solution

Using the quotient rule, we have

f ′(x) = (x2 −1) d
d x (x2 +1)− (x2 +1) d

d x (x2 −1)

(x2 −1)2

= (x2 −1) ·2x − (x2 +1) ·2x

(x2 −1)2 = −4x

(x2 −1)2 .
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Example

Let f (x) = xp
x2 +1

. Find f ′(x).

Solution

We first apply the quotient rule:

f ′(x) =
p

x2 +1 d
d x (x)−x d

d x

p
x2 +1

x2 +1
.

To differentiate
p

x2 +1, we use the chain rule:

d

d x
(x2 +1)

1
2 = 1

2
(x2 +1)−

1
2

d

d x
(x2 +1)

= 1

2
(x2 +1)−

1
2 (2x)

= x(x2 +1)−
1
2 .

Now returning to f ′(x), we obtain

f ′(x) =
p

x2 +1 ·1−x · x(x2 +1)−
1
2

x2 +1

= (x2 +1)−x2

(x2 +1)
3
2

= (x2 +1)−
3
2 .

The quotient rule can be proved using the product and chain rules, as the next two exer-

cises show.

Exercise 15

Let g be a differentiable function. Using the chain rule, show that

d

d x

(
1

g (x)

)
=− g ′(x)

(g (x))2 .

(This is a generalisation of exercise 14.)

Exercise 16

Using the previous exercise and the product rule, find the derivative of f (x) · 1

g (x)
, and

hence prove the quotient rule.
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Summary of differentiation rules

We can summarise the differentiation rules we have found as follows. They can be ex-

pressed in both functional and Leibniz notation. First, the linearity of differentiation.

Linearity of differentiation

Functional notation Leibniz notation

Constant multiple
d

d x

[
c f (x)

] = c f ′(x)
d

d x

(
c f

) = c
d f

d x

Sum
d

d x

[
f (x)+ g (x)

] = f ′(x)+ g ′(x)
d

d x

(
f + g

) = d f

d x
+ d g

d x

Difference
d

d x

[
f (x)− g (x)

] = f ′(x)− g ′(x)
d

d x

(
f − g

) = d f

d x
− d g

d x

We also have the product, quotient and chain rules. In Leibniz notation, these rules are

often written with u, v rather than f , g .

Product, quotient and chain rules

Functional notation Leibniz notation

Product
d

d x

[
f (x) g (x)

] = f (x) g ′(x)+ g (x) f ′(x)
d

d x

(
uv

) = u
d v

d x
+ v

du

d x

Quotient
d

d x

[
f (x)

g (x)

]
= g (x) f ′(x)− f (x) g ′(x)

(g (x))2

d

d x

(
u

v

)
= v du

d x −u d v
d x

v2

Chain
d

d x

[
f (g (x))

] = f ′(g (x)) g ′(x)
d y

d x
= d y

du

du

d x

The tangent line to a graph

Given a graph y = f (x), we have seen how to calculate the gradient of a tangent line to

this graph. We can go further and find the equation of a tangent line.

Consider the tangent line to the graph y = f (x) at x = a. This line has gradient f ′(a) and

passes through the point (a, f (a)). Once we know a point on the line and its gradient, we

can write down its equation:

y − f (a) = f ′(a) (x −a).

(See the module Coordinate geometry.)
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Example

Find the equation of the tangent line to the graph y = 1
2 x2 at x = 3.

Solution

Letting f (x) = 1
2 x2, we have f ′(x) = x, so f (3) = 9

2 and f ′(3) = 3. Thus the tangent line

has gradient 3 and passes through (3, 9
2 ), and is given by

y − 9

2
= 3(x −3)

or, equivalently,

y = 3x − 9

2
.

Exercise 17

What is the equation of the tangent line to the graph of y =
p

9−x2 at x = 3
p

2
2 ?

The second derivative

Given a function f (x), we can differentiate it to obtain f ′(x). It can be useful for many

purposes to differentiate again and consider the second derivative of a function.

In functional notation, the second derivative is denoted by f ′′(x). In Leibniz notation,

letting y = f (x), the second derivative is denoted by d 2 y
d x2 .

The placement of the 2’s in the notation d 2 y
d x2 may appear unusual. We consider that we

have applied the differentiation operator d
d x twice to y :( d

d x

)2
y = d 2

d x2 y = d 2 y

d x2 ;

or that we have applied the differentiation operator d
d x to d y

d x :

d 2 y

d x2 = d

d x

(d y

d x

)
.

As we will see in the module Applications of differentiation, the second derivative can

be very useful in curve-sketching. The second derivative determines the convexity of the

graph y = f (x) and can, for example, be used to distinguish maxima from minima.

The second derivative can also have a physical meaning. For example, if x(t ) gives posi-

tion at time t , then x ′(t ) is the velocity and the second derivative x ′′(t ) is the acceleration

at time t . This is discussed in the module Motion in a straight line.
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Example

Find the second derivative of f (x) = x2.

Solution

We have f ′(x) = 2x, and so f ′′(x) = 2.

This example implies that, if you ride your bike and your position is x2 metres after x sec-

onds, then your acceleration is a constant 2 m/s2.

Example

Let y = x7 +3x5 +x
3
2 . Find

d 2 y

d x2 .

Solution

The first derivative is

d y

d x
= 7x6 +15x4 + 3

2
x

1
2 ,

so the second derivative is

d 2 y

d x2 = 42x5 +60x3 + 3

4
x− 1

2 .

Exercise 18

Let f (x) = (x2 +7)100, as in exercise 11. What is f ′′(x)?

Exercise 19

Suppose the position of an object at time t is given by

x(t ) = 1−7t + (t −5)4.

Show that x ′′(t ) ≥ 0 for all t , so that acceleration is always non-negative.

Differentiation of inverses

A clever use of the chain rule arises when we have a function f and its inverse func-

tion f −1. Refer to the module Functions II for a discussion of inverse functions.
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Letting y = f (x), we can express x as the inverse function of y :

y = f (x), x = f −1(y).

The composition of f and its inverse f −1, by definition, is just x. That is, f −1( f (x)) = x.

We can think of this diagrammatically as

x
f→ y

f −1

→ x.

Using the chain rule, we can differentiate this composition of functions to obtain

d x

d x
= d x

d y

d y

d x
.

The derivative d x
d x of x with respect to x is just 1, so we obtain the important formula

1 = d x

d y

d y

d x
,

which can also be expressed as

d y

d x
= 1

d x
d y

or
d x

d y
= 1

d y
d x

.

This formula allows us to differentiate inverse functions, as in the following example.

Example

Let y = 3
p

x. Find
d y

d x
.

Solution

(We assume that we only know the derivative of xn when n is a positive integer.) The

inverse function of the cube-root function is the cube function: if y = 3
p

x, then x = y3.

We know the derivative of the cube function, d x
d y = 3y2. We use this to find d y

d x :

d y

d x
= 1

d x
d y

= 1

3y2 .

Substituting y = 3
p

x = x
1
3 gives

d y

d x
= 1

3x
2
3

= 1

3
x− 2

3 ,

as expected.

The following exercises generalise the above example to find the derivative of n
p

x = x
1
n ,

and then of any rational power of x.
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Exercise 20

Let n be a positive integer. Using the fact that the derivative of xn is nxn−1, prove that the

derivative of x
1
n is 1

n x
1
n −1.

Exercise 21

Using the chain rule and the previous exercise, prove that for any rational number p
q the

derivative of x
p
q is p

q x
p
q −1. (Here p, q are integers and q > 0.)

Implicit differentiation

Implicit differentiation is a powerful technique to find an instantaneous rate of change
d y
d x when there is an equation relating x and y . It applies even when y is not a function

of x. All that is required is that there is an equation relating x and y .

For example, consider the curve in the plane described by the equation x2 + y2 = 9. This

is a circle centred at the origin, of radius 3.

x

y

0 3

3

–3

–3

(x, y)

The circle x2 + y2 = 9.

Note that y is not a function of x! The circle fails the vertical-line test; we have a relation,

not a function. (See the module Functions I for a discussion of functions and relations.)

For a given value of x, there may be two distinct values of y :

x2 + y2 = 9 ⇐⇒ y =±
√

9−x2.

Although y is not a function of x, we can say that the equation x2 + y2 = 9 expresses y as

an implicit function of x.

Suppose you want to find the gradient of the tangent to this circle at a point (x, y). One

approach would be to consider either f1(x) =
p

9−x2 or f2(x) = −
p

9−x2, depending

on whether y is positive or negative, and then differentiate. (We saw the derivative ofp
9−x2 in exercise 17.)
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The much better approach of implicit differentiation is to differentiate both sides of the

equation x2+ y2 = 9 with respect to x. Differentiating y2 requires the chain rule, since y2

is a function of y and y is a function of x:

d

d x
(y2) = d

d y
(y2)

d y

d x
= 2y

d y

d x
.

We can now differentiate each term of x2 + y2 = 9, and we obtain

2x +2y
d y

d x
= 0.

Note the power of implicit differentiation: this equation involving d y
d x is valid for all

points on the circle except y = 0. When y 6= 0, we may solve for d y
d x and obtain

d y

d x
=−x

y
.

Without implicit differentiation, we would not have found such a neat formula!

From this formula, we can see that if x, y have the same sign, then the gradient of the

tangent is negative; while if x, y are of opposite sign, then the gradient is positive.

Exercise 22

Give a geometric argument why the tangent at the point (x, y) to a circle centred at the

origin has gradient −x

y
.

Example

What is the gradient of the curve y2 = x3 −7x at the points where x = 4?

Solution

When x = 4, we have y2 = 64−28 = 36, so y =±6. Implicit differentiation of y2 = x3 −7x

gives

2y
d y

d x
= 3x2 −7.

So when y 6= 0, we obtain
d y

d x
= 3x2 −7

2y
. Hence:

• At (x, y) = (4,6), we have
d y

d x
= 3 ·42 −7

2 ·6
= 41

12
.

• At (x, y) = (4,−6), we have
d y

d x
= 3 ·42 −7

2 · (−6)
=−41

12
.

The curve in the previous example is called an elliptic curve.
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Exercise 23

Consider the hyperbola x2 − y2 = 5.

a By writing y in terms of x, find the gradient of the tangent to the hyperbola at (3,−2).

b Find the same gradient by implicit differentiation.

Links forward

Higher derivatives

So far in this module, we have looked at first and second derivatives. But there’s no need

to stop differentiating after doing it twice!

Given a function f (x), if it can be differentiated k times, then we write the kth derivative

as f (k)(x). In Leibniz notation, the kth derivative of y with respect to x is denoted by
d k y

d xk
.

Higher derivatives are useful for finding polynomial approximations to functions, as we

see in the next section.

Exercise 24

Let n be a positive integer. What is the nth derivative of the function f (x) = xn?

Approximations of functions

We have seen that the equation of the tangent line to the graph y = f (x) at the point x = a

is given by

y = f (a)+ f ′(a) (x −a).

Therefore, if we define a linear function T1(x) as

T1(x) = f (a)+ f ′(a) (x −a),

then T1(x) approximates f (x) near x = a. In fact, since T ′
1(x) = f ′(a), we have

T1(a) = f (a) and T ′
1(a) = f ′(a).

So the functions T1(x) and f (x) agree at x = a, and their derivatives also agree at x = a.

In this sense, T1(x) is the ‘best linear approximation’ to f (x) at x = a.
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However, there’s no reason to stop at linear approximations: we might ask for the best

quadratic approximation to f (x) at x = a.

Consider the function

T2(x) = f (a)+ f ′(a) (x −a)+ f ′′(a)

2
(x −a)2.

This is a quadratic function. Its derivatives are

T ′
2(x) = f ′(a)+ f ′′(a) (x −a) and T ′′

2 (x) = f ′′(a),

so

T2(a) = f (a), T ′
2(a) = f ′(a) and T ′′

2 (a) = f ′′(a).

That is, T2(x) and f (x) agree at x = a, as do their first and second derivatives. In this

sense, T2(x) is the best quadratic approximation to f (x) at x = a.

In general, one can check that the function

Tk (x) = f (a)+ f ′(a) (x −a)+ f ′′(a)

2!
(x −a)2 + f (3)(a)

3!
(x −a)3 +·· ·+ f (k)(a)

k !
(x −a)k

is a polynomial of degree k which agrees with f (x) at x = a, along with all its first k

derivatives. That is,

Tk (a) = f (a), T ′
k (a) = f ′(a), T ′′

k (a) = f ′′(a), . . . , T (k)(a) = f (k)(a).

In this sense, Tk (x) is the best polynomial approximation of degree k to f (x) at x = a.

The polynomials Tk (x), called Taylor polynomials, are very important throughout math-

ematics and science for approximating functions. Taylor polynomials and their general-

isations are studied extensively in university-level mathematics courses.

The following diagram shows some of the first few Taylor polynomials approximating

the function f (x) = sin x near x = 0. Note how they provide successively better approx-

imations to f (x). (We will see how to differentiate sin x in the module The calculus of

trigonometric functions.)

x

y

0

1

2𝜋𝜋

–1

–2𝜋 –𝜋

y = T1(x)
y = T5(x)

y = sin x

y = T3(x)

Taylor polynomials approximating sin x at x = 0.
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History and applications

The discoverers of calculus

Today it is generally believed that calculus was discovered independently in the late 17th

century by two great mathematicians: Isaac Newton and Gottfried Leibniz. However, the

dispute over who first discovered calculus became a major scandal around the turn of

the 18th century.

Like most scientific discoveries, the discovery of calculus did not arise out of a vacuum.

In fact, many mathematicians and philosophers going back to ancient times made dis-

coveries relating to calculus.

The ancient Greeks made many discoveries that we would today think of as part of calcu-

lus — however, mostly integral calculus, which will be discussed in the module Integra-

tion. Indian mathematicians in Kerala had developed Taylor polynomials for functions

like sin x and cos x before 1500. (See the article Was calculus invented in India? listed in

the References section.)

In the early 17th century, Fermat developed a method called adequality for finding where

the derivative of a function is zero, that is, for solving f ′(x) = 0. But it was not until

Newton and Leibniz that gradients of tangents to curves could be calculated in general.

The Newton–Leibniz controversy

Newton described his version of differential calculus as ‘the method of fluxions’. He

wrote a paper on fluxions in 1666, but like many of his works, it was not published until

decades later. His magnum opus Philosophiae naturalis principia mathematica (Math-

ematical principles of natural philosophy) was published in 1687. This work includes

his theories of motion and gravitation, but does not include much calculus explicitly —

although there is some explanation of calculus at the beginning, and Newton certainly

used calculus to formulate his theories. Nonetheless, Newton’s ‘method of fluxions’ did

not explicitly appear in print until 1693.

Leibniz, on the other hand, published his first paper on calculus in 1684 — and claimed

to have discovered calculus in the 1670s. From the published record, at least, Leibniz

seemed to have discovered calculus first.

While Newton and Leibniz initially had a cordial relationship, Leibniz and his followers

did not take kindly to a statement made by the English mathematician John Wallis. With

a rather xenophobic and quarrelsome character, Wallis fought priority disputes on behalf
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The most scathing criticism perhaps came from Bishop Berkeley (The Analyst, 1734),

who ridiculed fluxions and infinitesimals:

And what are these Fluxions? The Velocities of evanescent Increments? And

what are these same evanescent Increments? They are neither finite Quan-

tities nor Quantities infinitely small, nor yet nothing. May we not call them

the Ghosts of departed Quantities?

It was not until over a century later that ideas like limits were formally introduced, and

put on a firm mathematical footing, so that today we present the derivative as

f ′(x) = lim
∆x→0

f (x +∆x)− f (x)

∆x
.

As with many branches of mathematics, the way that calculus is taught and learned bears

little relation to its historical development.

Appendix

Functions differentiable and not

We mentioned earlier that not all functions have derivatives. We now say a little more,

although a full discussion of these issues is the subject matter of higher level university

courses on analysis.

For a function to have a derivative, it must first of all be continuous — you must be able

to draw the graph without taking your pen off the page! More rigorously, continuity at a

point x = a means that we must have lim
x→a

f (x) = f (a).

Roughly speaking, a function will only have a derivative where its graph is smooth, and

can be drawn on the page without sharp corners.

For instance, consider the absolute value function

f (x) = |x| =
x if x ≥ 0,

−x if x < 0.

The following diagram shows the graph of y = f (x).
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x

y

0

y = f(x)

Graph of f (x) = |x|.

For x > 0, we have f (x) = x and so f ′(x) = 1. For x < 0, we have f (x) = −x and so

f ′(x) =−1. However, at x = 0 we have a problem.

x

y

0

1

–1

y = f’(x)

Graph of f ′(x).

By definition, if f ′(0) were to exist,

f ′(0) = lim
∆x→0

f (0+∆x)− f (0)

∆x
= lim
∆x→0

|∆x|
∆x

.

Unfortunately, for any ∆x > 0 we have |∆x|
∆x = 1, while for any ∆x < 0 we have |∆x|

∆x = −1.

So if ∆x approaches 0 from above, the limit is 1, but if ∆x approaches 0 from below, the

limit is −1. Therefore, the limit does not exist, and f ′(0) is not defined.

The function f (x) = |x| is therefore differentiable at all x 6= 0, but is not differentiable at

x = 0. It is differentiable almost everywhere, but not everywhere.

The absolute value function, however, is rather tame in comparison to examples like the

following. Consider the infinite series

f (x) = cos(πx)+ 1

2
cos(3πx)+ 1

22 cos(32πx)+·· · =
∞∑

n=0

1

2n cos(3nπx).

The following graphs show a few partial sums of this series.
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y ! cos Πx

x

y

y ! cos Πx #
1

2
cos 3Πx

x

y

y ! cos Πx #
1

2
cos 3Πx #

1

4
cos 9Πx

x

y

y ! cos Πx #
1

2
cos 3Πx # ... #

1

210
cos 310Πx

x

y

Graphs of approximations to a nowhere-differentiable function.

Note how the functions oscillate more rapidly and the graphs become ‘bumpier’ as each

term is added. In the limit, the function oscillates so wildly that, although it remains

continuous, it is too bumpy for the derivative to exist. It can be shown that this function

is continuous everywhere, but is differentiable nowhere!
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Answers to exercises

Exercise 1

Let f (x) = x4. We first compute

f (−1+∆x) = (−1+∆x)4 = 1−4(∆x)+6(∆x)2 −4(∆x)3 + (∆x)4

and f (−1) = 1. The gradient at x =−1 is then given by

lim
∆x→0

f (−1+∆x)− f (−1)

∆x
= lim
∆x→0

−4(∆x)+6(∆x)2 −4(∆x)3 + (∆x)4

∆x

= lim
∆x→0

(−4+6(∆x)−4(∆x)2 + (∆x)3)=−4.

The tangent line at (−1,1) has gradient −4, and hence has equation y −1 = −4(x +1) or,

equivalently, y =−4x −3.

Exercise 2

Let f (x) = x3. We compute

f ′(x) = lim
∆x→0

f (x +∆x)− f (x)

∆x
= lim
∆x→0

(x +∆x)3 −x3

∆x

= lim
∆x→0

3x2(∆x)+3x(∆x)2 + (∆x)3

∆x
= lim
∆x→0

(
3x2 +3x(∆x)+ (∆x)2)= 3x2.

Exercise 3

Let f (x) = c. Then, for any x and ∆x, we have f (x +∆x)− f (x) = c − c = 0. Hence, the

derivative is

f ′(x) = lim
∆x→0

f (x +∆x)− f (x)

∆x
= lim
∆x→0

0 = 0.

Exercise 4

Let f (x) = ax +b. Then

f ′(x) = lim
∆x→0

f (x +∆x)− f (x)

∆x
= lim
∆x→0

a(x +∆x)+b −ax −b

∆x

= lim
∆x→0

a(∆x)

∆x
= lim
∆x→0

a = a.
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Exercise 5

Let f (x) = 1
x . We first compute the quotient

f (x +∆x)− f (x)

∆x
= 1

∆x

( 1

x +∆x
− 1

x

)
= 1

∆x
· x − (x +∆x)

x(x +∆x)

= −∆x

(∆x)x(x +∆x)
=− 1

x(x +∆x)
.

Hence, the derivative is

f ′(x) = lim
∆x→0

f (x +∆x)− f (x)

∆x
= lim
∆x→0

− 1

x(x +∆x)
=− 1

x2 .

Thus the derivative of f (x) = 1
x is f ′(x) =− 1

x2 .

Exercise 6

The derivative of f (x)− g (x) is given by

lim
∆x→0

(
f (x +∆x)− g (x +∆x)

)− (
f (x)− g (x)

)
∆x

= lim
∆x→0

f (x +∆x)− f (x)

∆x
− lim
∆x→0

g (x +∆x)− g (x)

∆x

= f ′(x)− g ′(x).

Hence, the derivative of f (x)− g (x) is f ′(x)− g ′(x).

Exercise 7

Rewriting f (x) as x3 +x− 3
2 , we obtain f ′(x) = 3x2 − 3

2 x− 5
2 .

Exercise 8

We assume that the derivative of x is 1. We now prove that, if the derivative of xn is nxn−1,

then the derivative of xn+1 is (n +1)xn . To do this we use the product rule:

d

d x

(
xn+1)= d

d x

(
xn · x

)= xn d

d x

(
x
)+x

d

d x

(
xn)

= xn ·1+x ·nxn−1 = (n +1)xn .

It follows by induction that
d

d x
(xn) = nxn−1, for all positive integers n.
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Exercise 9

Using the product rule, we have

d

d x
f (x)2 = d

d x

(
f (x) · f (x)

)= f (x) · d

d x

(
f (x)

)+ f (x) · d

d x

(
f (x)

)
= f (x) f ′(x)+ f (x) f ′(x) = 2 f (x) f ′(x).

Exercise 10

We first use the product rule on the product of f (x) g (x) and h(x):

d

d x

[
f (x) g (x)h(x)

]= d

d x

[
f (x) g (x)

]
h(x)+ f (x) g (x)

d

d x

[
h(x)

]
.

Then we use the product rule on f (x) g (x):

d

d x

[
f (x) g (x)h(x)

]= (
f ′(x) g (x)+ f (x) g ′(x)

)
h(x)+ f (x) g (x)h′(x)

= f ′(x) g (x)h(x)+ f (x) g ′(x)h(x)+ f (x) g (x)h′(x).

For a general product f1(x) f2(x) · · · fn(x), the derivative is a sum of n terms, with f ′
i (x)

occurring in the i th term:

d

d x

[
f1(x) f2(x) · · · fn(x)

]
= f ′

1(x) f2(x) · · · fn(x)+ f1(x) f ′
2(x) f3(x) · · · fn(x)+·· ·+ f1(x) · · · fn−1(x) f ′

n(x).

Exercise 11

Let f (x) = (x2 +7)100 = g (h(x)), where g (x) = x100 and h(x) = x2 +7. Then g ′(x) = 100x99

and h′(x) = 2x, so by the chain rule

f ′(x) = g ′(h(x))h′(x) = 100(x2 +7)99 ·2x = 200x(x2 +7)99.

Exercise 12

We can write f (x)2 as h( f (x)) where h(x) = x2. The chain rule then gives

d

d x
h( f (x)) = h′( f (x)) f ′(x) = 2 f (x) f ′(x).

Exercise 13

We first think of f (g (h(x))) as the composition of f (x) and g (h(x)), so the chain rule gives

d

d x

[
f (g (h(x)))

]= f ′(g (h(x)))
d

d x
g (h(x)).
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Then using the chain rule again gives

d

d x

[
f (g (h(x)))

]= f ′(g (h(x))) g ′(h(x))h′(x).

In general, for the composition of n functions f1 ◦ f2 ◦ · · · ◦ fn , the derivative is a product

of n factors, and the i th factor is f ′
i ( fi+1(· · · ( fn(x)) · · · )).

Exercise 14

Let g (x) = xn and h(x) = 1

x
, so that

1

xn = h(g (x)). Then g ′(x) = nxn−1 and h′(x) = − 1

x2 .

By the chain rule,

d

d x

(
1

xn

)
= d

d x
h(g (x)) = h′(g (x)) g ′(x)

=− 1

(g (x))2 g ′(x) =− 1

x2n nxn−1 =−nx−n−1.

Thus, the derivative of x−n is −nx−n−1.

Exercise 15

Let h(x) = 1

x
. Then h′(x) =− 1

x2 and
1

g (x)
= h(g (x)). By the chain rule,

d

d x

(
1

g (x)

)
= d

d x
h(g (x)) = h′(g (x)) g ′(x) =− 1

(g (x))2 g ′(x) =− g ′(x)

(g (x))2 .

Exercise 16

Since the derivative of
1

g (x)
is − g ′(x)

(g (x))2 , the product rule gives

d

d x

(
f (x)

g (x)

)
= 1

g (x)

d

d x

(
f (x)

)+ f (x)
d

d x

(
1

g (x)

)

= f ′(x)

g (x)
+ f (x)

(
− g ′(x)

(g (x))2

)
= g (x) f ′(x)− f (x) g ′(x)

(g (x))2 .

This is the quotient rule.

Exercise 17

Let y =
p

9−x2. We differentiate:

d y

d x
= 1

2
(9−x2)−

1
2 · (−2x) = −xp

9−x2
.

So, at x = 3
p

2
2 , we have y = 3

p
2

2 and d y
d x = −3

p
2

2
2

3
p

2
=−1. The tangent line has gradient −1

and passes through the point ( 3
p

2
2 , 3

p
2

2 ), and hence has equation y =−x +3
p

2.
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Exercise 18

From f (x) = (x2 + 7)100, we have f ′(x) = 200x(x2 + 7)99. Using the product and chain

rules, we obtain

f ′′(x) = 200x
d

d x

[
(x2 +7)99]+ (x2 +7)99 d

d x

[
200x

]
= 200x ·99(x2 +7)98 ·2x + (x2 +7)99 ·200

= 200(x2 +7)98(199x2 +7).

Exercise 19

We compute the derivatives of x(t ) = 1−7t + (t −5)4 with respect to t :

x ′(t ) =−7+4(t −5)3

x ′′(t ) = 12(t −5)2.

Since squares are non-negative, we have x ′′(t ) ≥ 0 for all t . That is, the acceleration is

always non-negative.

Exercise 20

Let y = x
1
n , where n is a positive integer. We wish to find d y

d x . We have x = yn , and so
d x
d y = nyn−1. Thus

d y

d x
= 1

d x
d y

= 1

nyn−1 = 1

n
y1−n ,

and substituting y = x
1
n gives

d y

d x
= 1

n
x

1−n
n = 1

n
x

1
n −1,

as expected.

Exercise 21

Let y = x
p
q , where p, q are integers with q > 0. We wish to find d y

d x . We let u = x
1
q . Then

y = up and, by the previous exercise, du
d x = 1

q x
1
q −1. The chain rule then gives

d y

d x
= d y

du

du

d x
= pup−1 · 1

q
x

1
q −1 = p

q
up−1x

1
q −1.

Substituting u = x
1
q gives

d y

d x
= p

q
x

p−1
q x

1
q −1 = p

q
x

p
q −1.
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Exercise 22

If the circle is centred at the origin, then the radius of the circle from (0,0) to (x, y) has

gradient y
x . The tangent to the circle is perpendicular to the radius, and hence its gradient

is the negative reciprocal of y
x , that is, the gradient is − x

y .

Exercise 23

a From y2 = x2 −5, we have y =±
p

x2 −5. As we want to include the point (3,−2), we

take the negative square root and consider y =−
p

x2 −5. Then

d y

d x
=−1

2
(x2 −5)−

1
2 ·2x = −xp

x2 −5
.

At x = 3, we have d y
d x = −3p

4
=−3

2 .

b Implicit differentiation of x2 − y2 = 5 gives 2x −2y d y
d x = 0, and so d y

d x = x
y . Hence, at

the point (3,−2), we have d y
d x =−3

2 .

Exercise 24

The kth derivative of xn is n(n −1) · · · (n −k +1)xn−k , and hence the nth derivative is the

constant n!.
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